Jayant Khandare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11870566/publications.pdf

Version: 2024-02-01

430874 395702 2,423 32 18 33 citations g-index h-index papers 35 35 35 3706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibody mediated cotton-archetypal substrate for enumeration of circulating tumor cells and chemotherapy outcome in 3D tumors. Lab on A Chip, 2022, , .	6.0	2
2	Circulating tumor cells as a predictor for poor prognostic factors and overall survival in treatment $na\tilde{A}$ ve oral squamous cell carcinoma patients. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2022, 134, 73-83.	0.4	9
3	Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. Journal of Materials Chemistry B, 2021, 9, 2946-2978.	5.8	8
4	Designing 3D-nanosubstrates mimicking biological cell growth: pitfalls of using 2D substrates in the evaluation of anticancer efficiency. Nanoscale, 2021, 13, 17473-17485.	5.6	2
5	A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization. Nanoscale Advances, 2020, 2, 5746-5759.	4.6	2
6	Nanocarrier anticancer drug-conjugates cause higher cellular deformations: culpable for mischief. Biomaterials Science, 2020, 8, 5729-5738.	5.4	5
7	Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Scientific Reports, 2020, 10, 10010.	3.3	18
8	Correlation of CTCs with disease progression in Indian oral cancer patients Journal of Clinical Oncology, 2020, 38, e15541-e15541.	1.6	3
9	Optimizing Circulating Tumor Cells' Capture Efficiency of Magnetic Nanogels by Transferrin Decoration. Polymers, 2018, 10, 174.	4.5	13
10	Transferrin Decorated Thermoresponsive Nanogels as Magnetic Trap Devices for Circulating Tumor Cells. Macromolecular Rapid Communications, 2016, 37, 439-445.	3.9	26
11	New approaches from nanomedicine for treating leishmaniasis. Chemical Society Reviews, 2016, 45, 152-168.	38.1	93
12	Dendritic polymers for smart drug delivery applications. Nanoscale, 2015, 7, 3806-3807.	5.6	29
13	Prodrug Conjugate Strategies in Targeted Anticancer Drug Delivery Systems. Advances in Delivery Science and Technology, 2015, , 367-387.	0.4	1
14	Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. Nanoscale, 2015, 7, 3923-3932.	5.6	32
15	Dendronized Multifunctional Amphiphilic Polymers as Efficient Nanocarriers for Biomedical Applications. Macromolecular Rapid Communications, 2015, 36, 254-261.	3.9	44
16	Structure effect of carbon nanovectors in regulation of cellular responses. Biomaterials Science, 2014, 2, 57-66.	5.4	4
17	Comparative anti-inflammatory activity of poly(amidoamine) (PAMAM) dendrimer–dexamethasone conjugates with dexamethasone-liposomes. International Journal of Pharmaceutics, 2013, 449, 28-36.	5.2	39
18	Poly(ethylene glycol) versus Dendrimer Prodrug Conjugates: Influence of Prodrug Architecture in Cellular Uptake and Transferrin Mediated Targeting. Journal of Biomedical Nanotechnology, 2013, 9, 776-789.	1.1	12

#	Article	IF	Citations
19	Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. Journal of Drug Delivery, 2012, 2012, 1-17.	2.5	201
20	Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23, 415101.	2.6	74
21	Enhancing Surface Interactions with Colon Cancer Cells on a Transferrinâ€Conjugated 3D Nanostructured Substrate. Small, 2012, 8, 1657-1663.	10.0	18
22	Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chemical Society Reviews, 2012, 41, 2824-2848.	38.1	384
23	Sizeâ€Dependant Cellular Uptake of Dendritic Polyglycerol. Small, 2011, 7, 820-829.	10.0	56
24	Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials, 2010, 31, 4268-4277.	11.4	114
25	Pharmaceutically Used Polymers: Principles, Structures, and Applications of Pharmaceutical Delivery Systems. Handbook of Experimental Pharmacology, 2010, , 221-250.	1.8	18
26	Effects of Branching Architecture and Linker on the Activity of Hyperbranched Polymerâ^'Drug Conjugates. Bioconjugate Chemistry, 2009, 20, 842-846.	3.6	47
27	Targeted Proapoptotic Anticancer Drug Delivery System. Molecular Pharmaceutics, 2007, 4, 668-678.	4.6	60
28	Polymer–drug conjugates: Progress in polymeric prodrugs. Progress in Polymer Science, 2006, 31, 359-397.	24.7	571
29	Activity of Dendrimerâ^Methotrexate Conjugates on Methotrexate-Sensitive and -Resistant Cell Lines. Bioconjugate Chemistry, 2006, 17, 275-283.	3. 6	152
30	Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 2006, 27, 660-669.	11.4	163
31	Synthesis, Cellular Transport, and Activity of Polyamidoamine Dendrimerâ^Methylprednisolone Conjugates. Bioconjugate Chemistry, 2005, 16, 330-337.	3.6	142
32	Hyperbranched Polymer-Drug Conjugates with High Drug Payload for Enhanced Cellular Delivery. Pharmaceutical Research, 2004, 21, 2185-2195.	3. 5	79