Vicente Cortés CorberÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186951/publications.pdf

Version: 2024-02-01

111 papers 3,124 citations

30 h-index 52 g-index

121 all docs

121 docs citations

times ranked

121

3038 citing authors

#	Article	IF	Citations
1	Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks. Applied Catalysis A: General, 1995, 127, 1-40.	2.2	614
2	Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support. Applied Catalysis B: Environmental, 2013, 130-131, 224-238.	10.8	146
3	Selective Oxidation of Ethanol to Acetaldehyde on V2O5/TiO2/SiO2Catalysts. Journal of Catalysis, 1997, 171, 1-13.	3.1	99
4	Surface properties and catalytic performance for ethane combustion of La1â^'xKxMnO3+l´ perovskites. Applied Catalysis A: General, 2001, 207, 17-24.	2.2	96
5	Selective oxidehydrogenation of ethane with CO2 over CeO2-based catalysts. Catalysis Today, 2000, 61, 43-48.	2.2	79
6	Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catalysis Today, 2019, 333, 71-80.	2.2	72
7	Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 2014, 49, 604-616.	1.8	65
8	Nanostructured ceria-based catalysts for oxydehydrogenation of ethane with CO2. Topics in Catalysis, 2001, 15, 181-188.	1.3	60
9	Selective oxidation of toluene over V2O5/TiO2 catalysts. Effect of vanadium loading and of molybdenum addition on the catalytic properties. Applied Catalysis A: General, 1995, 126, 365-380.	2.2	58
10	Green oxidation of fatty alcohols: Challenges and opportunities. Applied Catalysis A: General, 2014, 474, 211-223.	2.2	57
11	Hydroxylation/oxidation of benzene over Cu-ZSM-5 systems: Optimization of the one-step route to phenol. Journal of Catalysis, 2007, 250, 184-189.	3.1	55
12	Faujasite Catalysts Promoted with Gallium Oxide:  A Physicochemical Study. The Journal of Physical Chemistry, 1996, 100, 10323-10330.	2.9	54
13	Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel, 2017, 188, 121-131.	3.4	53
14	Ethanol steam reforming on nanostructured catalysts of Ni, Co and CeO 2: Influence of synthesis method on activity, deactivation and regenerability. Catalysis Today, 2017, 296, 135-143.	2.2	51
15	Reuse of anion exchangers as supports for enzyme immobilization: Reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochemistry, 2016, 51, 1391-1396.	1.8	50
16	Propane dehydrogenation and coke formation on chromia-alumina catalysts: effect of reductive pretreatments. Industrial & Engineering Chemistry Research, 1992, 31, 2670-2674.	1.8	49
17	Oxidative dehydrogenation of propane over calcined vanadate-exchanged Mg,Al-layered double hydroxides. Applied Catalysis A: General, 1999, 185, 65-73.	2.2	49
18	Novel approaches for the improvement of selectivity in the oxidative activation of light alkanes. Catalysis Today, 2005, 99, 33-41.	2.2	47

#	Article	IF	CITATIONS
19	Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. Process Biochemistry, 2017, 61, 95-101.	1.8	47
20	Oxidative dehydrogenation of ethane on supported vanadium-containing oxides. Applied Catalysis A: General, 1995, 124, 281-296.	2.2	39
21	Oxidative dehydrogenation of isobutane on MCM-41 mesoporous molecular sieves. Applied Catalysis A: General, 2002, 232, 189-202.	2.2	39
22	Freeze-Dried Precursor-Based Synthesis of Nanostructured Cobaltâ^'Nickel Molybdates Co1-xNixMoO4. Chemistry of Materials, 2004, 16, 1697-1703.	3.2	39
23	Increasing the Enzyme Loading Capacity of Porous Supports by a Layer-by-Layer Immobilization Strategy Using PEI as Glue. Catalysts, 2019, 9, 576.	1.6	39
24	Selective oxidation of toluene on V2O5/TiO2/SiO2 catalysts modified with Te, Al, Mg, and K2SO4. Catalysis Today, 1996, 32, 265-272.	2.2	38
25	Oxidation of ethane on high specific surface SmCoO3 and PrCoO3 perovskites. Catalysis Today, 2009, 143, 309-314.	2.2	38
26	Novel manganese-promoted inverse CeO2/CuO catalyst: In situ characterization and activity for the water-gas shift reaction. Catalysis Today, 2020, 339, 24-31.	2.2	35
27	Oxidative dehydrogenation of isobutane over LaBaSm oxide catalyst. Catalysis Today, 2000, 61, 369-375.	2.2	34
28	Improving the CO-PROX Performance of Inverse CeO ₂ /CuO Catalysts: Doping of the CuO Component with Zn. Journal of Physical Chemistry C, 2014, 118, 9030-9041.	1.5	34
29	Influence of Ceria Dispersion on the Catalytic Performance of Cu/(CeO2)/Al2O3 Catalysts for the CO Oxidation Reaction Studies in Surface Science and Catalysis, 1998, , 591-600.	1.5	33
30	Towards efficient catalysts for the oxidative dehydrogenation of propane in the presence of CO ₂ : Cr/SiO ₂ systems prepared by direct hydrothermal synthesis. Catalysis Science and Technology, 2016, 6, 840-850.	2.1	32
31	On the role of heterogeneous and homogeneous processes in oxidative dehydrogenation of C3-C4 alkanes. Catalysis Today, 2000, 61, 287-293.	2.2	31
32	Surface reactivity of reduced LaFeO3 as studied by TPD and IR spectroscopies of CO, CO2 and H2. Journal of Materials Science, 1989, 24, 4437-4442.	1.7	29
33	Effect of LaCoO3 perovskite deposition on ceria-based supports on total oxidation of VOC. Catalysis Today, 2006, 112, 169-173.	2.2	28
34	Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207.	1.6	28
35	Synthesis of high surface area perovskite catalysts by non-conventional routes. Catalysis Today, 1997, 33, 361-369.	2.2	26
36	Synthesis and surface characterization of nanometric La1â^'xKxMnO3+δ particles. Catalysis Today, 1999, 52, 45-52.	2.2	25

#	Article	IF	CITATIONS
37	Selective oxidative activation of isobutane on a novel vanadium-substituted bimodal mesoporous oxide V-UVM-7. Catalysis Today, 2006, 117, 180-186.	2.2	24
38	Oxidative dehydrogenation of propane on zeolite catalysts. Catalysis Today, 2000, 61, 343-352.	2.2	23
39	Direct oxidation of isobutane to methacrolein over V-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 43-47.	2.2	23
40	Oxidative dehydrogenation of isobutane over Co-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 127-130.	2.2	22
41	Selective oxidation of 1-octanol over gold supported on mesoporous metal-modified HMS: The effect of the support. Catalysis Today, 2014, 227, 65-70.	2.2	22
42	Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts, 2021, 11, 115.	1.6	20
43	Effect of different additives on the performance of Vâ^'Mgâ^'O catalysts in the oxidative dehydrogenation of propane. Reaction Kinetics and Catalysis Letters, 1995, 55, 213-220.	0.6	19
44	Propane partial oxidation to acrolein over combined catalysts. Catalysis Letters, 2000, 69, 203-206.	1.4	19
45	In situ structural changes during toluene complete oxidation on supported EuCoO3 monitored with 151Eu Mössbauer spectroscopy. Catalysis Today, 2006, 117, 329-336.	2.2	19
46	Nickel catalysts promoted with lanthanum for ethanol steam reforming: Influence of support and treatment on activity. Applied Catalysis A: General, 2021, 619, 118141.	2.2	19
47	Isomorphe Substitution in Zeolithen: Katalyse an Boro-, Alumo- und Gallosilicaten mit ZSM-5-Struktur. Chemie-Ingenieur-Technik, 1986, 58, 969-971.	0.4	18
48	Title is missing!. Topics in Catalysis, 2000, 11/12, 153-160.	1.3	18
49	Catalytic properties of niobium and gallium oxide systems supported on MCM-41 type materials. Applied Catalysis A: General, 2007, 325, 328-335.	2.2	18
50	Hydrogen from Bioethanol. , 2013, , 135-169.		17
51	Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments. Molecules, 2016, 21, 486.	1.7	17
52	Silver catalysts for liquid-phase oxidation of alcohols in green chemistry: Challenges and outlook. Catalysis Today, 2019, 333, 81-88.	2.2	17
53	Gallium oxide promoted zeolite catalysts for oxidehydrogenation of propane. Catalysis Today, 1996, 32, 193-204.	2.2	16
54	Improvement of catalytic functions of binary V-Sb oxide catalysts for oxidative conversion of isobutane to isobutene. Chemical Engineering Journal, 2003, 95, 37-45.	6.6	16

#	Article	IF	CITATIONS
55	Green Oxidation ofnâ€Octanol on Supported Nanogold Catalysts: Formation of Gold Active Sites under Combined Effect of Gold Content, Additive Nature and Redox Pretreatment. ChemCatChem, 2019, 11, 1615-1624.	1.8	16
56	Mixed MVSb oxides as oxidehydrogenation catalysts. Catalysis Today, 1996, 32, 177-183.	2.2	15
57	n-Octanol oxidation on Au/TiO2 catalysts promoted with La and Ce oxides. Molecular Catalysis, 2017, 427, 1-10.	1.0	15
58	Ethane oxidehydrogenation selectivity and reductibility of mixed NiVSb oxides. Catalysis Letters, 1996, 40, 223-228.	1.4	14
59	Au/TiO 2 catalysts promoted with Fe and Mg for n -octanol oxidation under mild conditions. Catalysis Today, 2016, 278, 104-112.	2.2	14
60	Modified Ag/TiO2 systems: Promising catalysts for liquid-phase oxidation of alcohols. Fuel, 2018, 234, 110-119.	3.4	14
61	Structure of unpromoted and alkali-metal promoted MnOx-based catalystsfor oxidative coupling of methane. Applied Catalysis, 1990, 61, 311-328.	1.1	13
62	Catalytic combustion of ethane over high surface area Ln1â^'xKxMnO3 (Ln = La, Nd) perovskites: The effect of potassium substitution. Studies in Surface Science and Catalysis, 1997, , 747-756.	1.5	13
63	Oxidative conversion of isobutane to isobutene over V-Sb-Ni oxide catalysts. Applied Catalysis A: General, 2003, 250, 143-150.	2.2	13
64	High Performance Of Vanadia Catalysts Supported On Tio2–Coated Silica For Selective Oxidation Of Ethanol. Studies in Surface Science and Catalysis, 1992, 72, 147-154.	1.5	12
65	Oxidehydrogenation of Ethane with CO2 over transition metal doped MCM-41 mesoporous catalysts. Studies in Surface Science and Catalysis, 2004, 153, 343-346.	1.5	12
66	Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation. Molecules, 2016, 21, 532.	1.7	12
67	High performance of V–Ga–O catalysts for oxidehydrogenation of propane. Catalysis Today, 2003, 78, 247-256.	2.2	11
68	Nanostructured Oxide Catalysts for Oxidative Activation of Alkanes. Topics in Catalysis, 2009, 52, 962-969.	1.3	11
69	Novel route of synthesis of ultra-small Au nanoparticles on SiO2 supports. Fuel, 2019, 236, 589-597.	3.4	11
70	Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in n-Octanol Oxidation. Nanomaterials, 2020, 10, 880.	1.9	11
71	Structure and reactivity of alkali-doped calcium oxide catalysts for oxidative coupling of methane. Applied Catalysis A: General, 1993, 101, 167-183.	2.2	10
72	The thermal spreading of antimony oxides onto Fe2O3. Applied Surface Science, 2003, 210, 346-352.	3.1	10

#	Article	IF	CITATIONS
73	Acidity and oxidation activity of MoO3â^'UO3/SiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1988, 36, 235-240.	0.6	9
74	TPD and IR spectroscopic studies of CO, CO2 and H2 adsorption on LaCrO3. Applied Surface Science, 1989, 37, 353-366.	3.1	9
75	Laser Raman and XPS analyses of molybdenum-rare earth oxide catalysts. Surface and Interface Analysis, 1991, 17, 940-946.	0.8	9
76	Isoprene and C ₅ Olefins Production by Oxidative Dehydrogenation of Isopentane. Industrial & Dehydrogenation of Isopentane.	1.8	9
77	Vanadium oxide supported on gallium and indium oxides: Synthesis, physicochemical and catalytic properties. Studies in Surface Science and Catalysis, 2000, 130, 1889-1894.	1.5	8
78	Heterogeneous selective oxidation of fatty alcohols: Oxidation of 1-tetradecanol as a model substrate. Catalysis Today, 2014, 238, 49-53.	2.2	8
79	Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes, 2020, 8, 1016.	1.3	8
80	Partial oxidation of isobutene over molybdenum trioxide (MoO3)-uranium trioxide (UO3)-silicon dioxide catalysts. A reaction network. Industrial & Engineering Chemistry Product Research and Development, 1984, 23, 546-552.	0.5	7
81	Kinetics of the partial oxidation of isobutene over silica-supported molybdenum-uranium oxide catalyst. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 62-68.	0.5	7
82	Determination of kinetic parameters of the oxidehydrogenation of ethane with CO2 on nanosized calcium-doped ceria under fast deactivation processes. Catalysis Today, 2006, 112, 148-152.	2.2	7
83	Nanostructured Catalysts Based on Combinations of Cobalt and Cerium Oxides for CO Oxidation and Effect of the Presence of Water. Journal of Nanoscience and Nanotechnology, 2017, 17, 3816-3823.	0.9	7
84	Recent Applications of Nanometal Oxide Catalysts in Oxidation Reactions., 2019,, 227-293.		7
85	Selective oxidation of n-octanol on unmodified and La-modified nanogold catalysts: Effect of metal content. Catalysis Today, 2019, 333, 127-132.	2.2	7
86	The effect of support properties on n-octanol oxidation performed on gold – silver catalysts supported on MgO, ZnO and Nb2O5. Molecular Catalysis, 2020, 482, 110674.	1.0	7
87	Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. Nanomaterials, 2020, 10, 151.	1.9	7
88	Nickel Supported on Alkaline Earth Metal–Doped γ-Al2O3–La2O3 as Catalysts for Dry Reforming of Methane. Russian Journal of Applied Chemistry, 2020, 93, 289-298.	0.1	6
89	Selective oxidation of ethanol on V-MCM-41 catalysts. Catalysis Today, 2020, 356, 464-470.	2.2	5
90	Inverse CeO2/CuO WGS catalysts: Influence of the presence of oxygen in the reactant mixture. Catalysis Today, 2021, 363, 105-110.	2.2	5

#	Article	IF	CITATIONS
91	Catalytic and physico-chemical properties of a doped MoO3/SiO2 catalyst used in propylene oxidation. Reaction Kinetics and Catalysis Letters, 1981, 17, 181-186.	0.6	4
92	A comparative study of propene adsorption on total and partial oxidation catalysts. Journal of Colloid and Interface Science, 1989, 129, 270-277.	5.0	4
93	The antimony-rich layer created by thermal-spreading of Sb2O3 on Fe2O3 surface. Surface Science, 2003, 547, 55-62.	0.8	4
94	AEM, XPS and ISS characterization of catalyst modifications during propene oxidation over a supported mixed oxide catalyst. Surface and Interface Analysis, 1986, 9, 207-213.	0.8	3
95	Raman studies of supported V, Cr and Sb oxides and their mechanical mixture with α-Bi2Mo3O12. Journal of Molecular Catalysis A, 2000, 158, 271-274.	4.8	3
96	Transient response studies of isobutane oxidative dehydrogenation over molybdenum catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1901-1906.	1.5	3
97	Nanostructured silica-supported gold: Effect of nanoparticle size distribution and electronic state on its catalytic properties in oxidation reactions. Catalysis Today, 2021, 366, 77-86.	2.2	3
98	Microemulsion vs. Precipitation: Which Is the Best Synthesis of Nickel–Ceria Catalysts for Ethanol Steam Reforming?. Processes, 2021, 9, 77.	1.3	3
99	Enhanced O2 adsorption in the catalytic oxidation of isobutene on a supported Moî—,Uî—,O catalyst. Journal of Colloid and Interface Science, 1985, 106, 269-272.	5.0	2
100	Partial oxidation of 1-butene on NiOâ^'MoO3 catalysts supported on a HY ultrastable zeolite. Reaction Kinetics and Catalysis Letters, 1986, 32, 191-197.	0.6	2
101	Oxidehydrogenation of propane on gallium oxide-faujasite catalysts. Studies in Surface Science and Catalysis, 1994, 82, 133-142.	1.5	2
102	Oxidative dehydrogenation (OXD) of C3â^'C4 paraffins over transition metal oxides. Reaction Kinetics and Catalysis Letters, 1995, 56, 413-420.	0.6	2
103	Novel KF-TiO 2 catalysts for oxidative dehydrogenation of isobutane. Reaction Kinetics and Catalysis Letters, 2002, 75, 31-37.	0.6	2
104	Gold and Silver Catalysts for Liquid Phase n-Octanol Oxidation: Effect of Promoters. Current Organic Synthesis, 2017, 14, 323-331.	0.7	2
105	Unconventional Oxidants for Gas-Phase Oxidations. , 2014, , 877-920.		1
106	Selectivity control in oxidation of 1-tetradecanol on supported nano Au catalysts. Catalysis Today, 2016, 278, 113-119.	2.2	1
107	Effect of the Metal Deposition Order on Structural, Electronic and Catalytic Properties of TiO2-Supported Bimetallic Au-Ag Catalysts in 1-Octanol Selective Oxidation. Catalysts, 2021, 11, 799.	1.6	1
108	Institute of catalysis and petroleum chemistry, Madrid. Applied Catalysis, 1991, 78, N16.	1.1	0

#	Article	IF	CITATIONS
109	Title is missing!. Catalysis Today, 2009, 141, 243-244.	2.2	O
110	Oxidative Dehydrogenation of Propane on Large-Pore Zeolites. , 1998, , 397-401.		0
111	Characterization and Catalytic Activity for the Oxidation of Ethane and Propane on Platinum and Copper Supported on CeO2/Al2O3. Brazilian Journal of Chemical Engineering, 1998, 15, 210-216.	0.7	O