Günter Theißn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11869103/publications.pdf

Version: 2024-02-01

103 papers 11,467 citations

50170 46 h-index 91 g-index

109 all docs

109 docs citations

109 times ranked 8859 citing authors

#	Article	IF	CITATIONS
1	OsMADS14 and NFâ€YB1 cooperate in the direct activation of <i>OsAGPL2</i> and <i>Waxy</i> during starch synthesis in rice endosperm. New Phytologist, 2022, 234, 77-92.	3.5	18
2	Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). BMC Plant Biology, 2022, 22, .	1.6	3
3	Evolution of Floral Organ Identity. , 2021, , 697-713.		2
4	<i>Aethionema arabicum</i> genome annotation using PacBio fullâ€length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant Journal, 2021, 106, 275-293.	2.8	20
5	A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). Plant Journal, 2021, 107, 166-181.	2.8	8
6	Extending the Toolkit for Beauty: Differential Co-Expression of DROOPING LEAF-Like and Class B MADS-Box Genes during Phalaenopsis Flower Development. International Journal of Molecular Sciences, 2021, 22, 7025.	1.8	9
7	DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq. Plant Molecular Biology, 2021, 105, 543-557.	2.0	8
8	Independent origin of <i>MIRNA</i> genes controlling homologous target genes by partial inverted duplication of antisenseâ€transcribed sequences. Plant Journal, 2020, 101, 401-419.	2.8	7
9	Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs. Molecular Plant-Microbe Interactions, 2020, 33, 1129-1141.	1.4	9
10	Morphologically and physiologically diverse fruits of two Lepidium species differ in allocation of glucosinolates into immature and mature seed and pericarp. PLoS ONE, 2020, 15, e0227528.	1.1	3
11	Stranger than Fiction: Loss of MADS-Box Genes During Evolutionary Miniaturization of the Duckweed Body Plan. Compendium of Plant Genomes, 2020, , 91-101.	0.3	1
12	Reconstructing the ancestral flower of extant angiosperms: the †war of the whorls†is heating up. Journal of Experimental Botany, 2019, 70, 2615-2622.	2.4	14
13	Mechanismen der Evolution. , 2019, , 127-134.		O
14	A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors. Journal of Experimental Botany, 2018, 69, 1943-1954.	2.4	24
15	When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in <i>Aethionema</i> . Plant Journal, 2018, 94, 352-371.	2.8	20
16	Array of MADS-Box Genes: Facilitator for Rapid Adaptation?. Trends in Plant Science, 2018, 23, 563-576.	4.3	35
17	A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Molecular Biology and Evolution, 2018, 35, 2618-2638.	3.5	10
18	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	13.5	420

#	Article	IF	CITATIONS
19	The floral homeotic protein <scp>SEPALLATA</scp> 3 recognizes target <scp>DNA</scp> sequences by shape readout involving a conserved arginine residue in the <scp>MADS</scp> â€domain. Plant Journal, 2018, 95, 341-357.	2.8	17
20	Evolution of Floral Organ Identity. , 2018, , 1-17.		5
21	The <scp>ABC</scp> s of flower development: mutational analysis of <i><scp>AP</scp>1</i> /i>/ <scp>FUL</scp> á€ike genes in rice provides evidence for a homeotic (A)â€function in grasses. Plant Journal, 2017, 89, 310-324.	2.8	76
22	Developmental Control and Plasticity of Fruit and Seed Dimorphism in <i>Aethionema arabicum</i> Plant Physiology, 2016, 172, 1691-1707.	2.3	59
23	MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development (Cambridge), 2016, 143, 3259-3271.	1.2	346
24	The significance of developmental robustness for species diversity. Annals of Botany, 2016, 117, 725-732.	1.4	25
25	Structure and Evolution of Plant MADS Domain Transcription Factors. , 2016, , 127-138.		30
26	Nonâ€canonical structure, function and phylogeny of the B sister MADS â€box gene O s MADS 30 of rice () Tj ETÇ	0 <u>9</u> 080 0 rg	BT/Overloc
27	Phylogenomics reveals surprising sets of essential and dispensable clades of MIKC ^c â€group MADSâ€box genes in flowering plants. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 353-362.	0.6	69
28	Did Convergent Protein Evolution Enable Phytoplasmas to Generate â€~Zombie Plants'?. Trends in Plant Science, 2015, 20, 798-806.	4.3	28
29	Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Research, 2014, 42, 10927-10942.	6.5	68
30	The pleiotropic SEPALLATA â€ike gene Os MADS 34 reveals that the â€~empty glumes' of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytologist, 2014, 202, 689-702.	3. 5	42
31	Evolutionary game theory: molecules as players. Molecular BioSystems, 2014, 10, 3066-3074.	2.9	39
32	Evolutionary game theory: cells as players. Molecular BioSystems, 2014, 10, 3044-3065.	2.9	108
33	Structural Basis for the Oligomerization of the MADS Domain Transcription Factor SEPALLATA3 in <i>Arabidopsis</i>	3.1	97
34	My favourite flowering image: a cob of pod corn. Journal of Experimental Botany, 2014, 65, 6751-6754.	2.4	0
35	DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Annals of Botany, 2014, 114, 1431-1443.	1.4	49
36	MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. Annals of Botany, 2014, 114, 1407-1429.	1.4	101

#	Article	IF	Citations
37	FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications, 2013, 4, 2280.	5.8	142
38	Molecular mechanisms involved in convergent crop domestication. Trends in Plant Science, 2013, 18, 704-714.	4.3	150
39	Evidence that an evolutionary transition from dehiscent to indehiscent fruits in <i><scp>L</scp>epidium</i> (<scp>B</scp> rassicaceae) was caused by a change in the control of valve margin identity genes. Plant Journal, 2013, 73, 824-835.	2.8	71
40	Functional Conservation of MIKC*-Type MADS Box Genes in <i>Arabidopsis</i> and Rice Pollen Maturation Â. Plant Cell, 2013, 25, 1288-1303.	3.1	106
41	Conservation of fruit dehiscence pathways between <i><scp>L</scp>epidium campestre</i> and <i><scp>A</scp>rabidopsis thaliana</i> sheds light on the regulation of <i><scp>INDEHISCENT</scp></i> . Plant Journal, 2013, 76, 545-556.	2.8	42
42	Mapping a floral trait in Shepherds purse – †Stamenoid petals' in natural populations of Capsella bursa-pastoris (L.) Medik. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 641-647.	0.6	13
43	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	13.7	1,303
44	The <i>seirena </i> B Class Floral Homeotic Mutant of California Poppy (<i>Eschscholzia) Tj ETQq0 0 0 rgBT /Overl MADS Domain Protein Complexes Â. Plant Cell, 2013, 25, 438-453.</i>	ock 10 Tf 3.1	50 467 Td (c 52
45	Phylogenomics of MADS-Box Genes in Plants â€" Two Opposing Life Styles in One Gene Family. Biology, 2013, 2, 1150-1164.	1.3	70
46	Selaginella Genome Analysis – Entering the "Homoplasy Heaven―of the MADS World. Frontiers in Plant Science, 2012, 3, 214.	1.7	31
47	Molecular genetic basis of pod corn (<i>Tunicate</i> maize). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7115-7120.	3.3	48
48	Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2267-75.	3.3	96
49	Live and Let Die - The Bsister MADS-Box Gene OsMADS29 Controls the Degeneration of Cells in Maternal Tissues during Seed Development of Rice (Oryza sativa). PLoS ONE, 2012, 7, e51435.	1.1	7 3
50	MADS and More: Transcription Factors That Shape the Plant. Methods in Molecular Biology, 2011, 754, 3-18.	0.4	15
51	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	6.0	794
52	Conserved differential expression of paralogous <i>DEFICIENS</i> â€and <i>GLOBOSA</i> â€like MADSâ€box genes in the flowers of Orchidaceae: refining the †orchid code'. Plant Journal, 2011, 66, 1008-1019.	2.8	125
53	A double-flowered variety of lesser periwinkle (Vinca minor fl. pl.) that has persisted in the wild for more than 160 years. Annals of Botany, 2011, 107, 1445-1452.	1.4	15
54	SplamiRâ€"prediction of spliced miRNAs in plants. Bioinformatics, 2011, 27, 1215-1223.	1.8	15

#	Article	IF	CITATIONS
55	The Genetics of Capsella., 2011,, 373-387.		2
56	Cooperation and cheating in microbial exoenzyme production – Theoretical analysis for biotechnological applications. Biotechnology Journal, 2010, 5, 751-758.	1.8	31
57	On the origin of MADS-domain transcription factors. Trends in Genetics, 2010, 26, 149-153.	2.9	123
58	Functional conservation and diversification of class E floral homeotic genes in rice (<i>Oryza) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 622
59	Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of †floral quartets'. Plant Journal, 2010, 64, 177-190.	2.8	68
60	GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana Bsister MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant Journal, 2010, 63, 914-924.	2.8	49
61	The naked and the dead: The ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Seminars in Cell and Developmental Biology, 2010, 21, 118-128.	2.3	93
62	Reconstitution of â€~floral quartets' in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Research, 2009, 37, 2723-2736.	6.5	133
63	Developmental Robustness by Obligate Interaction of Class B Floral Homeotic Genes and Proteins. PLoS Computational Biology, 2009, 5, e1000264.	1.5	29
64	The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in †floral quartet†like complexes in vitro. Nucleic Acids Research, 2009, 37, 144-157.	6.5	141
65	Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. Journal of Experimental Botany, 2009, 60, 1503-1513.	2.4	64
66	Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evolutionary Biology, 2009, 9, 81.	3.2	43
67	Floral visitation and reproductive traits of Stamenoid petals, a naturally occurring floral homeotic variant of Capsella bursa-pastoris (Brassicaceae). Planta, 2009, 230, 1239-1249.	1.6	15
68	Saltational evolution: hopeful monsters are here to stay. Theory in Biosciences, 2009, 128, 43-51.	0.6	99
69	Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany, 2009, 104, 583-594.	1.4	135
70	MADS about the evolution of orchid flowers. Trends in Plant Science, 2008, 13, 51-59.	4.3	139
71	Missing Links: DNAâ€Binding and Target Gene Specificity of Floral Homeotic Proteins. Advances in Botanical Research, 2006, , 209-236.	0.5	14
72	Petaloidy and petal identity MADSâ€box genes in the balsaminoid genera <i>lmpatiens</i> and <i>Marcgravia</i> . Plant Journal, 2006, 47, 501-518.	2.8	54

#	Article	IF	Citations
73	The proper place of hopeful monsters in evolutionary biology. Theory in Biosciences, 2006, 124, 349-369.	0.6	96
74	Plant Breeding: MADS ways of memorizing winter: vernalization in weed and wheat., 2006, , 162-177.		1
75	Birth, life and death of developmental control genes: New challenges for the homology concept. Theory in Biosciences, 2005, 124, 199-212.	0.6	18
76	MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347, 183-198.	1.0	484
77	Gymnosperm Orthologues of Class B Floral Homeotic Genes and Their Impact on Understanding Flower Origin. Critical Reviews in Plant Sciences, 2004, 23, 129-148.	2.7	58
78	Plant Breeding: The ABCs of Flower Development in Arabidopsis and Rice. Progress in Botany Fortschritte Der Botanik, 2004, , 193-215.	0.1	3
79	Genomewide Structural Annotation and Evolutionary Analysis of the Type I MADS-Box Genes in Plants. Journal of Molecular Evolution, 2003, 56, 573-586.	0.8	109
80	The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 2003, 29, 464-489.	1.2	827
81	And then there were many: MADS goes genomic. Trends in Plant Science, 2003, 8, 475-483.	4.3	179
82	Two Ancient Classes of MIKC-type MADS-box Genes are Present in the Moss Physcomitrella patens. Molecular Biology and Evolution, 2002, 19, 801-814.	3. 5	216
83	Evolution of Class B Floral Homeotic Proteins: Obligate Heterodimerization Originated from Homodimerization. Molecular Biology and Evolution, 2002, 19, 587-596.	3.5	167
84	On the origin of class B floral homeotic genes: functional substitution and dominant inhibition inArabidopsisby expression of an orthologue from the gymnospermGnetum. Plant Journal, 2002, 31, 457-475.	2.8	81
85	Orthology: Secret life of genes. Nature, 2002, 415, 741-741.	13.7	66
86	Key Genes of Crop Domestication and Breeding: Molecular Analyses. Progress in Botany Fortschritte Der Botanik, 2002, , 189-203.	0.1	4
87	Characterization of three GLOBOSA -like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene, 2001, 262, 1-13.	1.0	108
88	Why don't mosses flower?. New Phytologist, 2001, 150, 1-5.	3.5	41
89	Floral quartets. Nature, 2001, 409, 469-471.	13.7	826
90	Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 2001, 4, 75-85.	3.5	799

#	Article	IF	Citations
91	BiodiversitĀsmessung bei Pflanzen anhand molekularer Daten: Ein Beitrag zur wissenschaftlichen Definition von BiodiversitĀs Wissenschaftsethik Und Technikfolgenbeurteilung, 2001, , 181-234.	0.8	4
92	MADS-Box Gene Diversity in Seed Plants 300 Million Years Ago. Molecular Biology and Evolution, 2000, 17, 1425-1434.	3.5	145
93	Evolutionary developmental genetics of floral symmetry: The revealing power of Linnaeus' monstrous flower. BioEssays, 2000, 22, 209-213.	1.2	40
94	Shattering developments. Nature, 2000, 404, 711-713.	13.7	21
95	Plant Breeding: FLO-Like Meristem Identity Genes: from Basic Science to Crop Plant Design. Progress in Botany Fortschritte Der Botanik, 2000, , 167-183.	0.1	6
96	The golden decade of molecular floral development(1990–1999): A cheerful obituary. Genesis, 1999, 25, 181-193.	3.1	3
97	The golden decade of molecular floral development (1990-1999): A cheerful obituary. , 1999, 25, 181-193.		40
98	ADEF/GLO-like MADS-box gene from a gymnosperm:Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes., 1999, 25, 245-252.		87
99	MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. , 1999, 25, 253-266.		103
100	Molecular Architects of Plant Body Plans. Progress in Botany Fortschritte Der Botanik, 1998, , 227-256.	0.1	14
101	Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 1996, 43, 484-516.	0.8	467
102	Classification and Phylogeny of the MADS-Box Multigene Family Suggest Defined Roles of MADS-Box Gene Subfamilies in the Morphological Evolution of Eukaryotes. Journal of Molecular Evolution, 1996, 43, 484-516.	0.8	47
103	Combinatorial Control of Floral Organ Identity by MADS-domain Transcription Factors. , 0, , 253-265.		3