Gabor Foldes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11868872/publications.pdf

Version: 2024-02-01

39 papers 1,563 citations

471509 17 h-index 35 g-index

42 all docs 42 docs citations

times ranked

42

2254 citing authors

#	Article	IF	CITATIONS
1	Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology. Methods in Molecular Biology, 2021, , 1.	0.9	O
2	New Modalities of 3D Pluripotent Stem Cell-Based Assays in Cardiovascular Toxicity. Frontiers in Pharmacology, 2021, 12, 603016.	3.5	4
3	ESC Heart Failure increases its impact factor. ESC Heart Failure, 2020, 7, 3421-3426.	3.1	1
4	Editorial: Multicellularity in the Cardiovascular System. Frontiers in Cardiovascular Medicine, 2019, 6, 2.	2.4	1
5	Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. Methods in Molecular Biology, 2019, 2150, 57-77.	0.9	7
6	Stem Cell Therapy to Treat Heart Failure. , 2019, , 286-303.		0
7	Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds. Archives of Toxicology, 2018, 92, 2897-2911.	4.2	26
8	Assessing the therapeutic readiness of stem cells for cardiovascular repair. Expert Opinion on Biological Therapy, 2017, 17, 911-914.	3.1	3
9	Impact of CT-apelin and NT-proBNP on identifying non-responders to cardiac resynchronization therapy. Biomarkers, 2017, 22, 279-286.	1.9	5
10	Stem cell death and survival in heart regeneration and repair. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 252-268.	4.9	90
11	G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Frontiers in Cell and Developmental Biology, 2015, 3, 76.	3.7	11
12	Nuclear pore rearrangements and nuclear trafficking in cardiomyocytes from rat and human failing hearts. Cardiovascular Research, 2015, 105, 31-43.	3.8	23
13	Signaling Via PI3K/FOXO1A Pathway Modulates Formation and Survival of Human Embryonic Stem Cell-Derived Endothelial Cells. Stem Cells and Development, 2015, 24, 869-878.	2.1	18
14	Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors. PLoS ONE, 2014, 9, e91119.	2.5	16
15	Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources. Biochemical and Biophysical Research Communications, 2014, 455, 172-177.	2.1	7
16	Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells. Stem Cell Reports, 2014, 3, 905-914.	4.8	46
17	Immunosuppressive Agents Modulate Function, Growth, and Survival of Cardiomyocytes and Endothelial Cells Derived from Human Embryonic Stem Cells. Stem Cells and Development, 2014, 23, 467-476.	2.1	6
18	High-Content Imaging and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2013, 1052, 29-39.	0.9	2

#	Article	IF	CITATIONS
19	Stem cellâ€derived endothelial cells for cardiovascular disease: a therapeutic perspective. British Journal of Clinical Pharmacology, 2013, 75, 897-906.	2.4	33
20	Conditioning of human embryonic stem cellâ€derived endothelial cells with PBMCs confers TLR4 sensing in coâ€culture conditions. FASEB Journal, 2013, 27, lb614.	0.5	0
21	Development of High Content Imaging Methods for Cell Death Detection in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Journal of Cardiovascular Translational Research, 2012, 5, 593-604.	2.4	35
22	Modulation of human embryonic stem cell-derived cardiomyocyte growth: A testbed for studying human cardiac hypertrophy?. Journal of Molecular and Cellular Cardiology, 2011, 50, 367-376.	1.9	130
23	Innate Immunity in Human Embryonic Stem Cells: Comparison with Adult Human Endothelial Cells. PLoS ONE, 2010, 5, e10501.	2.5	56
24	Embryonic stem cellâ€derived cardiomyocytes as a model to study fetal arrhythmia related to maternal disease. Journal of Cellular and Molecular Medicine, 2009, 13, 3730-3741.	3.6	29
25	Atorvastatin Modulates Th1/Th2 Response in Patients With Chronic Heart Failure. Journal of Cardiac Failure, 2009, 15, 551.	1.7	2
26	Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. International Journal of Cardiology, 2008, 124, 80-85.	1.7	61
27	Cardiomyocytes from embryonic stem cells: towards human therapy. Expert Opinion on Biological Therapy, 2008, 8, 1473-1483.	3.1	5
28	Targeting the Toll-System in Cardiovascular Sciences. Recent Patents on Inflammation and Allergy Drug Discovery, 2007, 1 , 57-67.	3.6	1
29	Involvement of endogenous ouabain-like compound in the cardiac hypertrophic process in vivo. Life Sciences, 2007, 80, 1303-1310.	4.3	16
30	Distinct modulation of angiotensin II-induced early left ventricular hypertrophic gene programming by dietary fat type. Journal of Lipid Research, 2006, 47, 1219-1226.	4.2	11
31	Toll-like receptor modulation in cardiovascular disease: a target for intervention?. Expert Opinion on Investigational Drugs, 2006, 15, 857-871.	4.1	14
32	Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochemical and Biophysical Research Communications, 2003, 308, 480-485.	2.1	229
33	Circulating and cardiac levels of apelin, novel ligand of the orphan receptor APJ, in patients with heart failure. American Journal of Hypertension, 2003, 16, A15.	2.0	0
34	Evidence for a Functional Role of Angiotensin II Type 2 Receptor in the Cardiac Hypertrophic Process In Vivo in the Rat Heart. Circulation, 2003, 108, 2414-2422.	1.6	41
35	Apelin, the Novel Endogenous Ligand of the Orphan Receptor APJ, Regulates Cardiac Contractility. Circulation Research, 2002, 91, 434-440.	4.5	551
36	Posttranscriptional Control of BNP Gene Expression in Angiotensin II–Induced Hypertension. Hypertension, 2002, 39, 803-808.	2.7	39

GABOR FOLDES

#	Article	IF	CITATIONS
37	Differential gene expressions of natriuretic peptides in left ventricular hypertrophy models in conscious rats. American Journal of Hypertension, 2001, 14, A161-A162.	2.0	O
38	Left ventricular expression of ANP, BNP and adrenomedullin are differentially regulated during beta receptor stimulation in rats in vivo. American Journal of Hypertension, 2001, 14, A206.	2.0	0
39	Factors Derived from Adrenals Are Required for Activation of Cardiac Gene Expression in Angiotensin II-Induced Hypertension. Endocrinology, 2001, 142, 4256-4263.	2.8	19