Keehoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11868702/publications.pdf Version: 2024-02-01

KEEHOON KIM

#	Article	IF	CITATIONS
1	Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain, 2011, 134, 747-758.	7.6	366
2	Haptic Feedback Enhances Grip Force Control of sEMG-Controlled Prosthetic Hands in Targeted Reinnervation Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 798-805.	4.9	118
3	On the Design of Miniature Haptic Devices for Upper Extremity Prosthetics. IEEE/ASME Transactions on Mechatronics, 2010, 15, 27-39.	5.8	81
4	Simple and Fast Compensation of sEMG Interface Rotation for Robust Hand Motion Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2397-2406.	4.9	32
5	Postural sensory correlates of freezing of gait in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 25, 72-77.	2.2	27
6	Quantitative Comparison of Bilateral Teleoperation Systems Using <formula formulatype="inline"><tex>\$mu\$</tex>-Synthesis. , 2007, 23, 776-789.</formula 		20
7	On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators. Smart Materials and Structures, 2017, 26, 105002.	3.5	19
8	Subject-Independent sEMG Pattern Recognition by Using a Muscle Source Activation Model. IEEE Robotics and Automation Letters, 2020, 5, 5175-5180.	5.1	14
9	Compact and Lightweight End-Effectors to Drive Hand-Operated Surgical Instruments for Robot-Assisted Microsurgery. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1933-1943.	5.8	11
10	A Tele-Operated Microsurgical Forceps-Driver With a Variable Stiffness Haptic Feedback Master Device. IEEE Robotics and Automation Letters, 2020, 5, 1946-1953.	5.1	11
11	A review of haptic feedback through peripheral nerve stimulation for upper extremity prosthetics. Current Opinion in Biomedical Engineering, 2022, 21, 100368.	3.4	11
12	Description of Instantaneous Restriction Space for Multi-DOFs Bilateral Teleoperation Systems Using Position Sensors in Unstructured Environments. IEEE Transactions on Robotics, 2009, 25, 1150-1158.	10.3	10
13	On the design of the 5-DoF finger-wearable cutaneous haptic device. , 2017, , .		7
14	On the Design of a Novel Underactuated Robotic Finger Prosthesis for Partial Hand Amputation. , 2019, 2019, 861-867.		7
15	A Novel Technique to Reject Artifact Components for Surface EMG Signals Recorded During Walking With Transcutaneous Spinal Cord Stimulation: A Pilot Study. Frontiers in Human Neuroscience, 2021, 15, 660583.	2.0	7
16	A Miniature Tactor Design for Upper Extremity Prosthesis. , 2007, , .		5
17	On the Design of a Thermal Display for Upper Extremity Prosthetics. , 2008, , .		5
18	Accurate force reflection method for a multi-d.o.f. haptic interface using instantaneous restriction space without a force sensor in an unstructured environment. Advanced Robotics, 2007, 21, 87-104.	1.8	4

КЕЕНООН КІМ

#	Article	IF	CITATIONS
19	A Pilot Study of a Thermal Display Using a Miniature Tactor for Upper Extremity Prosthesis. , 2007, , .		3
20	Handheld Nerve Electrode Insertion Tool. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2525-2530.	5.8	3
21	Preliminary Study of Virtual sEMG Signal-Assisted Classification. , 2019, 2019, 1133-1138.		3
22	A Framework for Quantitative Comparison of Bilateral Teleoperation Systems Using /spl mu/-Synthesis. , 2007, , .		2
23	A preliminary study on the method for stable and reliable implantation of neural interfaces into peripheral nervous system. , 2016, , .		2
24	Reply to letter: The association of postural sensory deficit with freezing of gait in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 31, 141-142.	2.2	1
25	HaptiCube: a Compact 5-DoF Finger-wearable Tactile Interface. , 2019, , .		1
26	One-step Implantation of a 3D Neural Microelectrode Array. , 2020, 2020, 3379-3383.		1
27	Quantitative Comparison of Bilateral Teleoperation Systems with Various Drive Mechanisms and Sensory Configurations. , 2006, , .		0
28	Restriction Space Projection method for position sensor based force reflection of multi degrees-of-freedom bilateral teleoperation systems in unstructured environments. , 2010, , .		0
29	Real-Time Mapping of Sensed Textures into Vibrotactile Signals for Sensory Substitution. Lecture Notes in Electrical Engineering, 2019, , 116-120.	0.4	0
30	Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation. The Journal of Korea Robotics Society, 2019, 14, 211-220.	0.4	0
31	Improvements in hand functions and changes in proximal muscle activities in myoelectric prosthetic hand users at home: a case series. Prosthetics and Orthotics International, 2022, Publish Ahead of Print, .	1.0	0