Jean-Baptiste Leran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11866807/publications.pdf

Version: 2024-02-01

1305906 20 269 8 citations papers

16 g-index h-index 20 20 20 392 docs citations times ranked citing authors all docs

1051228

#	Article	IF	CITATIONS
1	Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide. ACS Applied Energy Materials, 2022, 5, 5298-5306.	2.5	3
2	Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorber. Materials Advances, 2022, 3, 1295-1303.	2.6	7
3	GaAs nanowires on Si nanopillars: towards large scale, phase-engineered arrays. Nanoscale Horizons, 2022, 7, 211-219.	4.1	4
4	Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices. ACS Applied Nano Materials, 2022, 5, 5508-5515.	2.4	0
5	Towards defect-free thin films of the earth-abundant absorber zinc phosphide by nanopatterning. Nanoscale Advances, 2021, 3, 326-332.	2.2	13
6	van der Waals Epitaxy of Co _{10–<i>y</i>} Mn _{<i>x</i>+<i>y</i>} Thin Films: Chemical Composition Engineering and Magnetic Properties. Journal of Physical Chemistry C, 2021, 125, 9391-9399.	1.5	1
7	The path towards 1 $\hat{A}\mu m$ monocrystalline Zn ₃ P ₂ films on InP: substrate preparation, growth conditions and luminescence properties. JPhys Energy, 2021, 3, 034011.	2.3	8
8	Modeling the Shape Evolution of Selective Area Grown Zn ₃ P ₂ Nanoislands. Crystal Growth and Design, 2021, 21, 4732-4737.	1.4	1
9	Raman spectroscopy and lattice dynamics calculations of tetragonally-structured single crystal zinc phosphide (Zn ₃ P ₂) nanowires. Nanotechnology, 2021, 32, 085704.	1.3	10
10	Rotated domains in selective area epitaxy grown Zn ₃ P ₂ : formation mechanism and functionality. Nanoscale, 2021, 13, 18441-18450.	2.8	7
11	Raman tensor of zinc-phosphide (Zn ₃ P ₂): from polarization measurements to simulation of Raman spectra. Physical Chemistry Chemical Physics, 2021, 24, 63-72.	1.3	3
12	Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide. Nanoscale Horizons, 2020, 5, 274-282.	4.1	15
13	Heterotwin Zn ₃ P ₂ superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale, 2020, 12, 22534-22540.	2.8	7
14	van der Waals Epitaxy of Earth-Abundant Zn ₃ P ₂ on Graphene for Photovoltaics. Crystal Growth and Design, 2020, 20, 3816-3825.	1.4	24
15	Ill–V Integration on Si(100): Vertical Nanospades. ACS Nano, 2019, 13, 5833-5840.	7.3	24
16	Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. Nano Letters, 2018, 18, 49-57.	4.5	62
17	Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality. Nanoscale, 2018, 10, 17080-17091.	2.8	31
18	Tilting Catalyst-Free InAs Nanowires by 3D-Twinning and Unusual Growth Directions. Crystal Growth and Design, 2017, 17, 3596-3605.	1.4	4

#	Article	IF	CITATIONS
19	Impact of the Ga Droplet Wetting, Morphology, and Pinholes on the Orientation of GaAs Nanowires. Crystal Growth and Design, 2016, 16, 5781-5786.	1.4	38
20	Molecular beam epitaxy of InAs nanowires in SiO2nanotube templates: challenges and prospects for integration of Illâ€"Vs on Si. Nanotechnology, 2016, 27, 455601.	1.3	7