
Saul H Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11866479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	3.9	39
2	Expanding the Repertoire for "Large Small Molecules†Prodrug ABBV-167 Efficiently Converts to Venetoclax with Reduced Food Effect in Healthy Volunteers. Molecular Cancer Therapeutics, 2021, 20, 999-1008.	4.1	12
3	Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature, 2020, 578, 306-310.	27.8	259
4	Donated chemical probes for open science. ELife, 2018, 7, .	6.0	80
5	Preclinical Characterization of BET Family Bromodomain Inhibitor ABBV-075 Suggests Combination Therapeutic Strategies. Cancer Research, 2017, 77, 2976-2989.	0.9	100
6	Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 2017, 550, 128-132.	27.8	498
7	Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax. Cancer Discovery, 2017, 7, 1376-1393.	9.4	105
8	Structure-Guided Design of a Series of MCL-1 Inhibitors with High Affinity and Selectivity. Journal of Medicinal Chemistry, 2015, 58, 2180-2194.	6.4	130
9	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	8.0	698
10	Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Science Translational Medicine, 2015, 7, 279ra40.	12.4	430
11	Discovery of a Potent and Selective BCL-X _L Inhibitor with <i>in Vivo</i> Activity. ACS Medicinal Chemistry Letters, 2014, 5, 1088-1093.	2.8	242
12	ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Medicine, 2013, 19, 202-208.	30.7	2,426
13	Mammalian apoptosis in a parasitic worm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6695-6696.	7.1	5
14	The Bcl-2/Bcl-XL/Bcl-w Inhibitor, Navitoclax, Enhances the Activity of Chemotherapeutic Agents <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2011, 10, 2340-2349.	4.1	129
15	The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemotherapy and Pharmacology, 2010, 66, 869-880.	2.3	113
16	Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6587-6591.	2.2	68
17	Identification of Expression Signatures Predictive of Sensitivity to the Bcl-2 Family Member Inhibitor ABT-263 in Small Cell Lung Carcinoma and Leukemia/Lymphoma Cell Lines. Molecular Cancer Therapeutics, 2010, 9, 545-557.	4.1	64
18	Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncology, The, 2010, 11, 1149-1159.	10.7	696

SAUL H ROSENBERG

#	Article	IF	CITATIONS
19	The Bcl-2 Family Antagonist ABT-737 Significantly Inhibits Multiple Animal Models of Autoimmunity. Journal of Immunology, 2009, 182, 7482-7489.	0.8	61
20	ABT-888 Confers Broad <i>In vivo</i> Activity in Combination with Temozolomide in Diverse Tumors. Clinical Cancer Research, 2009, 15, 7277-7290.	7.0	134
21	Discovery of 3 <i>H</i> -Benzo[4,5]thieno[3,2- <i>d</i>]pyrimidin-4-ones as Potent, Highly Selective, and Orally Bioavailable Inhibitors of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM) Kinases. Journal of Medicinal Chemistry, 2009, 52, 6621-6636.	6.4	77
22	ABT-751, a novel tubulin-binding agent, decreases tumor perfusion and disrupts tumor vasculature. Anti-Cancer Drugs, 2009, 20, 483-492.	1.4	33
23	Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorganic and Medicinal Chemistry, 2008, 16, 6965-6975.	3.0	69
24	Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3955-3958.	2.2	43
25	Investigation of novel 7,8-disubstituted-5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-ones as potent Chk1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2311-2315.	2.2	12
26	Discovery of an Orally Bioavailable Small Molecule Inhibitor of Prosurvival B-Cell Lymphoma 2 Proteins. Journal of Medicinal Chemistry, 2008, 51, 6902-6915.	6.4	267
27	ABT-263 and rapamycin act cooperatively to kill lymphoma cells <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2008, 7, 3265-3274.	4.1	69
28	ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Research, 2008, 68, 3421-3428.	0.9	1,666
29	Potentiation of Temozolomide Cytotoxicity by Poly(ADP)Ribose Polymerase Inhibitor ABT-888 Requires a Conversion of Single-Stranded DNA Damages to Double-Stranded DNA Breaks. Molecular Cancer Research, 2008, 6, 1621-1629.	3.4	73
30	Activity of the Bcl-2 Family Inhibitor ABT-263 in a Panel of Small Cell Lung Cancer Xenograft Models. Clinical Cancer Research, 2008, 14, 3268-3277.	7.0	182
31	Influence of Bcl-2 Family Members on the Cellular Response of Small-Cell Lung Cancer Cell Lines to ABT-737. Cancer Research, 2007, 67, 1176-1183.	0.9	283
32	ABT-888, an Orally Active Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents in Preclinical Tumor Models. Clinical Cancer Research, 2007, 13, 2728-2737.	7.0	723
33	Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL. Journal of Medicinal Chemistry, 2007, 50, 641-662.	6.4	281
34	Discovery of 1,4-dihydroindeno[1,2-c]pyrazoles as a novel class of potent and selective checkpoint kinase 1 inhibitors. Bioorganic and Medicinal Chemistry, 2007, 15, 2759-2767.	3.0	36
35	Discovery of a novel small molecule binding site of human survivin. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3122-3129.	2.2	69
36	1,4-Dihydroindeno[1,2-c]pyrazoles as potent checkpoint kinase 1 inhibitors: Extended exploration on phenyl ring substitutions and preliminary ADME/PK studies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3618-3623.	2.2	12

SAUL H ROSENBERG

#	Article	IF	CITATIONS
37	Synthesis and biological evaluation of 4′-(6,7-disubstituted-2,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-biphenyl-4-ol as potent Chk1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4308-4315.	2.2	23
38	Cyanopyridyl containing 1,4-dihydroindeno[1,2-c]pyrazoles as potent checkpoint kinase 1 inhibitors: Improving oral biovailability. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5665-5670.	2.2	5
39	Discovery of 4′-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-benzonitriles and 4′-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-pyridine-2′-carbonitriles as potent checkpoint kinase 1 (Chk1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5944-5951.	2.2	25
40	Synthesis and in-vitro biological activity of macrocyclic urea Chk1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6499-6504.	2.2	11
41	Discovery and Structureâ^Activity Relationship of Antagonists of B-Cell Lymphoma 2 Family Proteins with Chemopotentiation Activity in Vitro and in Vivo. Journal of Medicinal Chemistry, 2006, 49, 1165-1181.	6.4	126
42	Discovery of a Potent Inhibitor of the Antiapoptotic Protein Bcl-xLfrom NMR and Parallel Synthesis. Journal of Medicinal Chemistry, 2006, 49, 656-663.	6.4	289
43	Synthesis and biological evaluation of 3-ethylidene-1,3-dihydro-indol-2-ones as novel checkpoint 1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 421-426.	2.2	44
44	Synthesis and biological evaluation of 1-(2,4,5-trisubstituted phenyl)-3-(5-cyanopyrazin-2-yl)ureas as potent Chk1 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2293-2298.	2.2	31
45	Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. International Journal of Cancer, 2006, 119, 2784-2794.	5.1	114
46	A Small-Molecule Inhibitor of Bcl-XL Potentiates the Activity of Cytotoxic Drugs In vitro and In vivo. Cancer Research, 2006, 66, 8731-8739.	0.9	141
47	A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 2005, 24, 1403-1411.	5.9	86
48	An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435, 677-681.	27.8	3,157
49	Novel indication for cancer therapy: Chk1 inhibition sensitizes tumor cells to antimitotics. International Journal of Cancer, 2005, 115, 528-538.	5.1	44
50	Survivin Enhances Aurora-B Kinase Activity and Localizes Aurora-B in Human Cells. Journal of Biological Chemistry, 2003, 278, 486-490.	3.4	105
51	Chk1 Mediates S and G2 Arrests through Cdc25A Degradation in Response to DNA-damaging Agents. Journal of Biological Chemistry, 2003, 278, 21767-21773.	3.4	313
52	Development of a high-throughput fluorescence polarization assay for Bcl-xL. Analytical Biochemistry, 2002, 307, 70-75.	2.4	87
53	Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth. Neoplasia, 2000, 2, 235-241.	5.3	176