Monique Y Leclerc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11864601/publications.pdf

Version: 2024-02-01

623734 580821 32 829 14 25 citations g-index h-index papers 32 32 32 976 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Quarterly Journal of the Royal Meteorological Society, 1995, 121, 1209-1228.	2.7	86
2	Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer. Journal of Geophysical Research, 1997, 102, 9323-9334.	3.3	83
3	Modelling the turbulence structure in the canopy layer. Agricultural and Forest Meteorology, 1997, 87, 3-25.	4.8	77
4	Consistent Two-Equation Closure Modelling for Atmospheric Research: Buoyancy and Vegetation Implementations. Boundary-Layer Meteorology, 2012, 145, 307-327.	2.3	70
5	Footprints in Micrometeorology and Ecology. , 2014, , .		66
6	Influence of nocturnal lowâ€level jet on turbulence structure and CO ₂ flux measurements over a forest canopy. Journal of Geophysical Research, 2008, 113, .	3.3	46
7	Productivity and Carbon Dioxide Exchange of Leguminous Crops: Estimates from Flux Tower Measurements. Agronomy Journal, 2014, 106, 545-559.	1.8	40
8	CO2FLUXES NEAR A FOREST EDGE: A NUMERICAL STUDY. , 2008, 18, 1454-1469.		38
9	Characteristics of Nocturnal Low-Level Jets Observed in the North Florida Area. Monthly Weather Review, 2009, 137, 2605-2621.	1.4	34
10	Influence of Nocturnal Low-level Jets on Eddy-covariance Fluxes over a Tall Forest Canopy. Boundary-Layer Meteorology, 2008, 126, 219-236.	2.3	29
11	Forward-in-time and Backward-in-time Dispersion in the Convective Boundary Layer: the Concentration Footprint. Boundary-Layer Meteorology, 2007, 123, 201-218.	2.3	28
12	Footprint Analysis., 2012,, 211-261.		26
13	Multiple timescale variations and controls of soil respiration in a tropical dry dipterocarp forest, western Thailand. Plant and Soil, 2015, 390, 167-181.	3.7	26
14	Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions. Boundary-Layer Meteorology, 2009, 131, 363-384.	2.3	25
15	Fractal Analyses of High-Resolution Cloud Droplet Measurements. Journals of the Atmospheric Sciences, 1994, 51, 397-413.	1.7	23
16	Low-Frequency Effects on Eddy Covariance Fluxes under the Influence of a Low-Level Jet. Journal of Applied Meteorology and Climatology, 2007, 46, 338-352.	1.5	21
17	Largeâ€eddy simulation of smallâ€scale surface effects on the convective boundaryâ€layer structure. Atmosphere - Ocean, 1994, 32, 717-731.	1.6	19
18	A Simple Method of Estimating Scalar Fluxes Over Forests. Boundary-Layer Meteorology, 2009, 132, 401-414.	2.3	16

#	Article	IF	CITATIONS
19	Assessing the shear-sheltering theory applied to low-level jets in the nocturnal stable boundary layer. Theoretical and Applied Climatology, 2012, 110, 359-371.	2.8	15
20	On concentration footprints for a tall tower in the presence of a nocturnal low-level jet. Agricultural and Forest Meteorology, 2011, 151, 755-764.	4.8	12
21	Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Boundary-Layer Meteorology, 2015, 156, 349-370.	2.3	12
22	Impacts of a strong El Niñ0 event on leaf phenology and carbon dioxide exchange in a secondary dry dipterocarp forest. Agricultural and Forest Meteorology, 2020, 287, 107945.	4.8	7
23	"Wet/dry Daisyworld― a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 175-188.	1.6	6
24	Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets. Asian Journal of Atmospheric Environment, 2012, 6, 222-233.	1.1	6
25	Fractal properties of temperature fluctuations in the convective surface layer. Boundary-Layer Meteorology, 1994, 71, 169-187.	2.3	4
26	Heat flux apportionment to heterogeneous surfaces using flux footprint analysis. Advances in Atmospheric Sciences, 2008, 25, 107-116.	4.3	4
27	History and Definition. , 2014, , 1-20.		4
28	Surface-Layer Properties and Parameterizations. , 2014, , 21-70.		4
29	The impact of logging on the surrounding flow in a managed forest. Theoretical and Applied Climatology, 2011, 106, 511-521.	2.8	1
30	Multi-scale decomposition of turbulent fluxes above a forest canopy. Agricultural and Forest Meteorology, 2014, 186, 48-63.	4.8	1
31	Footprint Studies. , 2014, , 103-144.		0
32	Looking Forward to the Next Generation of Footprint Models. , 2014, , 225-229.		O