Shinn-Zong Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11864529/publications.pdf

Version: 2024-02-01

81900 74163 5,853 82 39 75 citations g-index h-index papers 83 83 83 7512 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intracerebral transplantation of autologous adiposeâ€derived stem cells for chronic ischemic stroke: A phase I study. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 3-13.	2.7	14
2	n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway. International Journal of Molecular Sciences, 2021, 22, 6339.	4.1	12
3	Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress–mediated hippocampal damage after myocardial infarction. Journal of Molecular Medicine, 2021, 99, 1815-1827.	3.9	8
4	Host preâ€conditioning improves human adipose–derived stem cell transplantation in ageing rats after myocardial infarction: Role of NLRP3 inflammasome. Journal of Cellular and Molecular Medicine, 2020, 24, 12272-12284.	3.6	7
5	Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats. Redox Biology, 2019, 27, 101170.	9.0	17
6	Exosomes and Stem Cells in Degenerative Disease Diagnosis and Therapy. Cell Transplantation, 2018, 27, 349-363.	2.5	111
7	Adipose-derived Stem Cells Stimulated with <i>n</i> -Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson's Disease. Cell Transplantation, 2018, 27, 456-470.	2.5	34
8	The Role of Gene Editing in Neurodegenerative Diseases. Cell Transplantation, 2018, 27, 364-378.	2.5	11
9	Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biology and Medicine, 2017, 104, 298-310.	2.9	330
10	Neuroprotection of Granulocyte Colony-Stimulating Factor for Early Stage Parkinson's Disease. Cell Transplantation, 2017, 26, 409-416.	2.5	22
11	Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. International Journal of Molecular Sciences, 2016, 17, 26.	4.1	7
12	Role of IGF1R+ MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Scientific Reports, 2016, 6, 32595.	3.3	21
13	Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model. Cell Transplantation, 2016, 25, 899-912.	2.5	13
14	Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplantation, 2015, 24, 339-347.	2.5	410
15	Current Proceedings of Cerebral Palsy. Cell Transplantation, 2015, 24, 471-485.	2.5	18
16	Human Adipose-Derived Stem Cells Accelerate the Restoration of Tensile Strength of Tendon and Alleviate the Progression of Rotator Cuff Injury in a Rat Model. Cell Transplantation, 2015, 24, 509-520.	2.5	59
17	G-CSF as an Adjunctive Therapy with Umbilical Cord Blood Cell Transplantation for Traumatic Brain Injury. Cell Transplantation, 2015, 24, 447-457.	2.5	16
18	PACAP38/PAC1 Signaling Induces Bone Marrow-Derived Cells Homing to Ischemic Brain. Stem Cells, 2015, 33, 1153-1172.	3.2	16

#	Article	IF	CITATIONS
19	Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[<i>>a</i>)]pyrene-induced oncogenic properties of lung cancer A549 cells. Nanotechnology, 2015, 26, 105101.	2.6	32
20	Adipose Tissue-Derived Stem Cells in Neural Regenerative Medicine. Cell Transplantation, 2015, 24, 487-492.	2.5	25
21	In Vitro Study of a Novel Nanogold-Collagen Composite to Enhance the Mesenchymal Stem Cell Behavior for Vascular Regeneration. PLoS ONE, 2014, 9, e104019.	2.5	46
22	The Use of ADSCs as a Treatment for Chronic Stroke. Cell Transplantation, 2014, 23, 541-547.	2.5	29
23	Intracerebral Implantation of Autologous Peripheral Blood Stem Cells in Stroke Patients: A Randomized Phase II Study. Cell Transplantation, 2014, 23, 1599-1612.	2.5	85
24	Polyglutamine (PolyQ) Diseases: Genetics to Treatments. Cell Transplantation, 2014, 23, 441-458.	2.5	150
25	Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability. Tumor Biology, 2014, 35, 4875-4884.	1.8	24
26	Improved Human Mesenchymal Stem Cell Isolation. Cell Transplantation, 2014, 23, 399-406.	2.5	19
27	Mouse-Induced Pluripotent Stem Cells Generated Under Hypoxic Conditions in the Absence of Viral Infection and Oncogenic Factors and Used for Ischemic Stroke Therapy. Stem Cells and Development, 2014, 23, 421-433.	2.1	31
28	Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regenerative Medicine, 2014, 9, 409-412.	1.7	14
29	Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radical Biology and Medicine, 2014, 77, 71-81.	2.9	60
30	In Situ Altering of the Extracellular Matrix to Direct the Programming of Endogenous Stem Cells. Stem Cells, 2014, 32, 1989-1990.	3.2	6
31	Role of stressâ€inducible proteinâ€1 in recruitment of bone marrow derived cells into the ischemic brains. EMBO Molecular Medicine, 2013, 5, 1227-1246.	6.9	20
32	Role of HIF- $1\hat{1}$ -activated Epac1 on HSC-mediated neuroplasticity in stroke model. Neurobiology of Disease, 2013, 58, 76-91.	4.4	26
33	Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplantation, 2013, 22, 701-709.	2.5	105
34	Critical Role of Increased PTEN Nuclear Translocation in Excitotoxic and Ischemic Neuronal Injuries. Journal of Neuroscience, 2013, 33, 7997-8008.	3.6	72
35	Neural Stem Cells and Stroke. Cell Transplantation, 2013, 22, 619-630.	2.5	31
36	Rejuvenation of Aged Pig Facial Skin by Transplanting Allogeneic Granulocyte Colony-Stimulating Factor-Induced Peripheral Blood Stem Cells from a Young Pig. Cell Transplantation, 2013, 22, 755-765.	2.5	7

#	Article	IF	CITATIONS
37	Biocompatibility and Favorable Response of Mesenchymal Stem Cells on Fibronectin-Gold Nanocomposites. PLoS ONE, 2013, 8, e65738.	2.5	28
38	Human Umbilical Cord Mesenchymal Stem Cells Support Nontumorigenic Expansion of Human Embryonic Stem Cells. Cell Transplantation, 2012, 21, 1515-1527.	2.5	25
39			

#	Article	IF	CITATIONS
55	Efficient Tracking of Non-Iron-Labeled Mesenchymal Stem Cells With Serial MRI in Chronic Stroke Rats. Stroke, 2007, 38, 367-374.	2.0	73
56	The Role of Endothelial Progenitor Cells in Ischemic Cerebral and Heart Diseases. Cell Transplantation, 2007, 16, 273-284.	2.5	34
57	Regenerative Therapy for Stroke. Cell Transplantation, 2007, 16, 171-181.	2.5	90
58	Enhancement of neuroplasticity through upregulation of \hat{l}^21 -integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of Disease, 2007, 27, 339-353.	4.4	196
59	New Molecular Insights into Cellular Survival and Stress Responses: Neuroprotective Role of Cellular Prion Protein (PrPC). Molecular Neurobiology, 2007, 35, 236-244.	4.0	18
60	New Molecular Insights into Cellular Survival and Stress Responses: Neuroprotective Role of Cellular Prion Protein (PrPC). Molecular Neurobiology, 2007, 35, 236.	4.0	2
61	Homing genes, cell therapy and stroke. Frontiers in Bioscience - Landmark, 2006, 11, 899.	3.0	80
62	Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. Cmaj, 2006, 174, 927-933.	2.0	184
63	The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo3. Journal of Neurochemistry, 2006, 99, 1251-1262.	3.9	108
64	In vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells. Biochemical Pharmacology, 2006, 72, 308-319.	4.4	78
65	Current Concepts in Adult Stem Cell Therapy for Stroke. Current Medicinal Chemistry, 2006, 13, 3565-3574.	2.4	24
66	Intracerebral Peripheral Blood Stem Cell (CD34 $<$ sup $>+<$ /sup $>$) Implantation Induces Neuroplasticity by Enhancing \hat{I}^21 Integrin-Mediated Angiogenesis in Chronic Stroke Rats. Journal of Neuroscience, 2006, 26, 3444-3453.	3.6	155
67	The Antitumor Effects of Angelica sinensis on Malignant Brain Tumors In vitro and In vivo. Clinical Cancer Research, 2005, 11, 3475-3484.	7.0	93
68	Overexpression of PrP ^C by Adenovirus-Mediated Gene Targeting Reduces Ischemic Injury in a Stroke Rat Model. Journal of Neuroscience, 2005, 25, 8967-8977.	3.6	122
69	Hyperbaric Oxygen Enhances the Expression of Prion Protein and Heat Shock Protein 70 in a Mouse Neuroblastoma Cell Line. Cellular and Molecular Neurobiology, 2004, 24, 257-268.	3.3	35
70	Functional Recovery of Stroke Rats Induced by Granulocyte Colony-Stimulating Factor–Stimulated Stem Cells. Circulation, 2004, 110, 1847-1854.	1.6	335
71	Neuregulin-1 reduces ischemia-induced brain damage in rats. Neurobiology of Aging, 2004, 25, 935-944.	3.1	70
72	Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis. Life Sciences, 2004, 75, 1579-1594.	4.3	85

#	Article	IF	CITATIONS
73	Gene treatment of cerebral stroke by rAAV vector delivering IL-1ra in a rat model. NeuroReport, 2003, 14, 803-807.	1.2	19
74	Intravenous Administration of Bone Morphogenetic Protein-7 After Ischemia Improves Motor Function in Stroke Rats. Stroke, 2003, 34, 558-564.	2.0	126
75	Bone Morphogenetic Protein-6 Reduces Ischemia-Induced Brain Damage in Rats. Stroke, 2001, 32, 2170-2178.	2.0	72
76	Methamphetamine Potentiates Ischemia/Reperfusion Insults After Transient Middle Cerebral Artery Ligation. Stroke, 2001, 32, 775-782.	2.0	49
77	Recombinant Adeno-Associated Virus Vector Expressing Glial Cell Line-Derived Neurotrophic Factor Reduces Ischemia-Induced Damage. Experimental Neurology, 2000, 166, 266-275.	4.1	62
78	Transplantation of Fetal Kidney Tissue Reduces Cerebral Infarction Induced by Middle Cerebral Artery Ligation. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1329-1335.	4.3	45
79	Osteogenic Protein-1 Protects Against Cerebral Infarction Induced by MCA Ligation in Adult Rats. Stroke, 1999, 30, 126-133.	2.0	68
80	Glial Cell Line-Derived Neurotrophic Factor Protects against Ischemia-Induced Injury in the Cerebral Cortex. Journal of Neuroscience, 1997, 17, 4341-4348.	3.6	309
81	Pineal ganglioglioma with premature thelarche. Child's Nervous System, 1996, 12, 103-106.	1.1	9
82	Ketamine Antagonizes Nitric Oxide Release From Cerebral Cortex After Middle Cerebral Artery Ligation in Rats. Stroke, 1996, 27, 747-752.	2.0	69