Othon Moultos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1186331/othon-moultos-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,166 65 31 22 h-index g-index citations papers 1,627 67 4.3 5.24 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
65	Electro-osmotic Drag and Thermodynamic Properties of Water in Hydrated Nafion Membranes from Molecular Dynamics <i>Journal of Physical Chemistry C</i> , 2022 , 126, 8121-8133	3.8	O
64	Electroreduction of CO/CO to C Products: Process Modeling, Downstream Separation, System Integration, and Economic Analysis <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 17862-1	7880	3
63	Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 12303-12314	3.4	2
62	Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. <i>Journal of Chemical & Empire Engineering Data</i> , 2021 , 66, 524-534	2.8	5
61	Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. <i>Journal of Chemical & </i>	2.8	4
60	Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. <i>Journal of Chemical Physics</i> , 2021 , 154, 144502	3.9	6
59	How sensitive are physical properties of choline chloride-urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood-Buff theory. <i>Journal of Chemical Physics</i> , 2021 , 154, 1845	5 0 2 ⁹	5
58	The effect of hydrogen content and yield strength on the distribution of hydrogen in steel: a diffusion coupled micromechanical FEM study. <i>Acta Materialia</i> , 2021 , 209, 116799	8.4	8
57	Diffusivity of -, -, -cyclodextrin and the inclusion complex of -cyclodextrin: Ibuprofen in aqueous solutions; A molecular dynamics simulation study. <i>Fluid Phase Equilibria</i> , 2021 , 528, 112842	2.5	11
56	Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 5485-5494	6.7	8
55	Recent advances in the continuous fractional component Monte Carlo methodology. <i>Molecular Simulation</i> , 2021 , 47, 804-823	2	14
54	Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. <i>Molecular Simulation</i> , 2021 , 47, 831-845	2	27
53	In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 8383-8394	9.5	1
52	Engineering Model for Predicting the Intradiffusion Coefficients of Hydrogen and Oxygen in Vapor, Liquid, and Supercritical Water based on Molecular Dynamics Simulations. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 3226-3244	2.8	1
51	New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 3752-3757	6.1	2
50	Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide. <i>ACS Applied Materials & Discourse &</i>	9.5	6
49	Vapor pressures and vapor phase compositions of choline chloride urea and choline chloride ethylene glycol deep eutectic solvents from molecular simulation. <i>Journal of Chemical Physics</i> , 2021 , 155, 114504	3.9	1

48	Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures. <i>Nanomaterials</i> , 2020 , 10,	5.4	5
47	Inclusion Complexation of Organic Micropollutants with Ecyclodextrin. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 1218-1228	3.4	10
46	Multiple Free Energy Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using Umbrella Sampling. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 1757	-1767	6
45	Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 2678-2682	6.1	14
44	Kirkwood-Buff Integrals Using Molecular Simulation: Estimation of Surface Effects. <i>Nanomaterials</i> , 2020 , 10,	5.4	12
43	Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 3799-3806	6.4	18
42	On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 2020 , 152, 024501	3.9	28
41	The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study. <i>Chemical Engineering Journal</i> , 2020 , 389, 123968	14.7	22
40	On the validity of the StokesEinstein relation for various water force fields. <i>Molecular Physics</i> , 2020 , 118, e1702729	1.7	13
39	Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. <i>Journal of Molecular Liquids</i> , 2020 , 316, 113729	6	14
38	Artificial intelligence and thermodynamics help solving arson cases. <i>Scientific Reports</i> , 2020 , 10, 20502	4.9	1
37	Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation. <i>Fluid Phase Equilibria</i> , 2020 , 523, 112785	2.5	10
36	Two-Phase Equilibrium Conditions in Nanopores. <i>Nanomaterials</i> , 2020 , 10,	5.4	9
35	Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study. <i>Journal of Chemical & Chemic</i>	2.8	16
34	Preferential Adsorption in Mixed Electrolytes Confined by Charged Amorphous Silica. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 16711-16720	3.8	20
33	Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. <i>Fluid Phase Equilibria</i> , 2019 , 497, 10-18	2.5	33
32	Rayleigh-Brillouin light scattering spectra of CO2 from molecular dynamics. <i>Journal of Chemical Physics</i> , 2019 , 151, 064201	3.9	1
31	OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order- n Algorithm in LAMMPS. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 1290-1294	6.1	32

30	Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline Solutions from Molecular Dynamics Simulations. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 11014-11025	3.4	41
29	Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. <i>Molecular Simulation</i> , 2019 , 45, 425-453	2	69
28	Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state. <i>AICHE Journal</i> , 2019 , 65, 792-803	3.6	10
27	Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 2667-2677	6.4	68
26	Predictions of water/oil interfacial tension at elevated temperatures and pressures: A molecular dynamics simulation study with biomolecular force fields. <i>Fluid Phase Equilibria</i> , 2018 , 476, 30-38	2.5	23
25	In Silico Screening of Metal-Organic Frameworks for Adsorption-Driven Heat Pumps and Chillers. <i>ACS Applied Materials & Discreta (Samp)</i> ACS Applied Materials & Discreta (Samp) ACS Applied (Samp) ACS ACS APPLIED (Samp) ACS ACS APPLIED (Samp) ACS APPLIED (Sam	9.5	25
24	Computation of partial molar properties using continuous fractional component Monte Carlo. <i>Molecular Physics</i> , 2018 , 116, 3331-3344	1.7	19
23	Optimizing Nonbonded Interactions of the OPLS Force Field for Aqueous Solutions of Carbohydrates: How to Capture Both Thermodynamics and Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 6690-6700	6.4	10
22	Prediction of Composition-Dependent Self-Diffusion Coefficients in Binary Liquid Mixtures: The Missing Link for Darken-Based Models. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 147	84 ³ 1 ² 479	94 ¹⁵
21	Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 5959-5968	6.4	24
20	Using clathrate hydrates for gas storage and gas-mixture separations: experimental and computational studies at multiple length scales. <i>Molecular Physics</i> , 2018 , 116, 2041-2060	1.7	12
19	13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. <i>Green Chemistry and Chemical Engineering</i> , 2017 , 633-6	60	2
18	Molecular dynamics simulations of the diffusion coefficients of light n-alkanes in water over a wide range of temperature and pressure. <i>Fluid Phase Equilibria</i> , 2016 , 407, 236-242	2.5	28
17	Self-diffusion coefficients of the binary (H 2 O + CO 2) mixture at high temperatures and pressures. Journal of Chemical Thermodynamics, 2016 , 93, 424-429	2.9	30
16	Hydrogen-Bonding Polarizable Intermolecular Potential Model for Water. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 12358-12370	3.4	28
15	Gaussian-Charge Polarizable and Nonpolarizable Models for CO2. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 984-94	3.4	25
14	Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n-Hexane, n-Decane, n-Hexadecane, Cyclohexane, and Squalane. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 12890-12900	3.4	39
13	System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers. <i>Journal of Chemical Physics</i> , 2016 , 145, 074109	3.9	60

LIST OF PUBLICATIONS

12	Thermodynamic and Transport Properties of H2O + NaCl from Polarizable Force Fields. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 3802-10	6.4	49
11	Atomistic molecular dynamics simulations of H2O diffusivity in liquid and supercritical CO2. <i>Molecular Physics</i> , 2015 , 113, 2805-2814	1.7	27
10	Entropic effects in mixed micelles formed by star/linear and star/star AB copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 442-452	2.6	3
9	Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures. <i>Physical Review E</i> , 2015 , 92, 052601	2.4	1
8	Atomistic molecular dynamics simulations of COIdiffusivity in HD for a wide range of temperatures and pressures. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5532-41	3.4	63
7	Micellization Properties of Eshaped, Figure-Eight-Shaped and Linked Rings Copolymers. <i>Macromolecules</i> , 2014 , 47, 5851-5859	5.5	9
6	Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system. <i>Journal of Chemical Physics</i> , 2014 , 141, 234507	3.9	49
5	Self-Assembly Behavior of Thermoresponsive Bis-Solvophilic Linear Block Terpolymers: A Simulation Study. <i>Macromolecules</i> , 2012 , 45, 2570-2579	5.5	6
4	Brownian dynamics simulations on the self-assembly behavior of AB hybrid dendritic-star copolymers. <i>Langmuir</i> , 2011 , 27, 835-42	4	30
3	Brownian Dynamics Simulations on Self-Assembly Behavior of H-Shaped Copolymers and Terpolymers <i>Macromolecules</i> , 2010 , 43, 6903-6911	5.5	16
2	Off lattice Monte Carlo simulations of AB hybrid dendritic star copolymers. <i>Polymer</i> , 2009 , 50, 328-335	3.9	7
1	Thermal conductivity of aqueous solutions of reline, ethaline, and glyceline deep eutectic solvents; a molecular dynamics simulation study. <i>Molecular Physics</i> ,e1876263	1.7	8