Imrul Mosaddek Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 2013, 63, 49-60.	5.8	219
2	Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 2015, 111, 1-12.	4.2	129
3	Difference in Yield and Physiological Features in Response to Drought and Salinity Combined Stress during Anthesis in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e77869.	2.5	116
4	<i>HvEXPB7</i> , a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. Journal of Experimental Botany, 2015, 66, 7405-7419.	4.8	94
5	Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Science of the Total Environment, 2014, 496, 275-281.	8.0	81
6	Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 2013, 141, 2743-2750.	8.2	66
7	Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 2018, 162, 71-76.	6.0	57
8	Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedlings. Environmental Science and Pollution Research, 2016, 23, 18229-18238.	5.3	54
9	Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e63428.	2.5	30
10	Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. BioMetals, 2015, 28, 1063-1078.	4.1	29
11	Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/root ultrastructure. Environmental Science and Pollution Research, 2017, 24, 9417-9427.	5.3	27
12	Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243, 973-985.	3.2	22
13	The Barley S-Adenosylmethionine Synthetase 3 Gene HvSAMS3 Positively Regulates the Tolerance to Combined Drought and Salinity Stress in Tibetan Wild Barley. Cells, 2020, 9, 1530.	4.1	20
14	Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes. PLoS ONE, 2013, 8, e79158.	2.5	19
15	N-acetyl-cysteine alleviates Cd toxicity and reduces Cd uptake in the two barley genotypes differing in Cd tolerance. Plant Growth Regulation, 2014, 74, 93-105.	3.4	18
16	Role of brassinosteroids in alleviating toxin-induced stress of Verticillium dahliae on cotton callus growth. Environmental Science and Pollution Research, 2017, 24, 12281-12292.	5.3	18
17	Subcellular distribution and chemical forms of Co2+ in three barley genotypes under different Co2+ levels. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	17
18	The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	16

#	Article	IF	CITATIONS
19	The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60, 832-842.	1.9	15
20	Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry, 2014, 75, 36-44.	5.8	14
21	Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System. International Journal of Molecular Sciences, 2018, 19, 3553.	4.1	12
22	An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. Journal of Advanced Research, 2023, 44, 23-37.	9.5	11
23	Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession. Journal of Plant Physiology, 2016, 198, 10-22.	3.5	10
24	Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.). Environmental Science and Pollution Research, 2022, 29, 20721-20730.	5.3	8
25	Tolerance to Combined Stress of Drought and Salinity in Barley. , 2015, , 93-121.		6
26	Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley. Plant Growth Regulation, 2017, 82, 259-270.	3.4	6
27	Exploration and Utilization of Drought-Tolerant Barley Germplasm. , 2016, , 115-152.		3