I-Ting Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11862504/publications.pdf

Version: 2024-02-01

186209 315616 4,803 38 28 h-index citations papers

38 g-index 43 43 43 8673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	13.9	936
2	Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy. Journal of the American Chemical Society, 2015, 137, 1412-1415.	6.6	406
3	Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS Nano, 2017, 11, 3943-3949.	7.3	370
4	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	5.1	316
5	A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. Journal of the American Chemical Society, 2015, 137, 4900-4903.	6.6	288
6	Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. ACS Nano, 2010, 4, 4371-4379.	7.3	228
7	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
8	Evolution of Functional Six-Nucleotide DNA. Journal of the American Chemical Society, 2015, 137, 6734-6737.	6.6	185
9	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	13.5	179
10	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	6.0	174
11	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	13.7	154
12	DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for <i>in vivo</i> Imaging and Clinical Tissue Recognition. Theranostics, 2015, 5, 985-994.	4.6	119
13	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	6.0	119
14	Self-Assembled DNA Immunonanoflowers as Multivalent CpG Nanoagents. ACS Applied Materials & Interfaces, 2015, 7, 24069-24074.	4.0	101
15	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie - International Edition, 2016, 55, 12372-12375.	7.2	78
16	Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. Nanoscale, 2016, 8, 8600-8606.	2.8	78
17	Phospholipid-functionalized mesoporous silica nanocarriers forÂselective photodynamic therapy of cancer. Biomaterials, 2013, 34, 7462-7470.	5.7	76
18	Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell, 2022, 185, 113-130.e15.	13.5	64

#	Article	IF	CITATIONS
19	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	2.9	59
20	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	56
21	Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. Journal of the American Chemical Society, 2018, 140, 14314-14323.	6.6	47
22	Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. Journal of the American Chemical Society, 2018, 140, 2-5.	6.6	43
23	Constructing Smart Protocells with Built-In DNA Computational Core to Eliminate Exogenous Challenge. Journal of the American Chemical Society, 2018, 140, 6912-6920.	6.6	43
24	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	7.0	40
25	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	2.9	38
26	Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. Nanoscale, 2018, 10, 10986-10990.	2.8	36
27	DNA Aptamer Based Nanodrugs: Molecular Engineering for Efficiency. Chemistry - an Asian Journal, 2015, 10, 2084-2094.	1.7	35
28	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie - International Edition, 2018, 57, 11589-11593.	7.2	33
29	Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX. PLoS ONE, 2015, 10, e0125863.	1.1	29
30	Three dimensional multipod superstructures based on Cu(OH) (sub) 2 (sub) as a highly efficient nanozyme. Journal of Materials Chemistry B, 2016, 4, 4657-4661.	2.9	25
31	Development of a panel of DNA Aptamers with High Affinity for Pancreatic Ductal Adenocarcinoma. Scientific Reports, 2015, 5, 16788.	1.6	22
32	Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS ONE, 2022, 17, e0268767.	1.1	18
33	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie, 2016, 128, 12560-12563.	1.6	9
34	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	1.6	9
35	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie, 2018, 130, 11763-11767.	1.6	8
36	Comprehensive Regression Model for Dissociation Equilibria of Cell-Specific Aptamers. Analytical Chemistry, 2018, 90, 10487-10493.	3.2	6

I-TING TENG

#	Article	IF	CITATIONS
37	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	1.8	4
38	Conjugation of Fab' Fragments with Fluorescent Dyes for Single-molecule Tracking on Live Cells. Bio-protocol, 2019, 9, e3375.	0.2	3