Zhigang Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186239/publications.pdf Version: 2024-02-01

		1171	2032
317	45,300	111	205
papers	citations	h-index	g-index
324	324	324	28312
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.	13.7	4,089
2	Stretchable, Transparent, Ionic Conductors. Science, 2013, 341, 984-987.	6.0	1,396
3	Hydrogel ionotronics. Nature Reviews Materials, 2018, 3, 125-142.	23.3	1,119
4	Ionic skin. Advanced Materials, 2014, 26, 7608-7614.	11.1	992
5	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	6.0	845
6	Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 2010, 23, 549-578.	1.0	806
7	Interface crack between two elastic layers. International Journal of Fracture, 1990, 43, 1-18.	1.1	804
8	A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008, 56, 1779-1793.	2.3	790
9	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	15.6	680
10	Foldable Printed Circuit Boards on Paper Substrates. Advanced Functional Materials, 2010, 20, 28-35.	7.8	630
11	Robotic Tentacles with Threeâ€Dimensional Mobility Based on Flexible Elastomers. Advanced Materials, 2013, 25, 205-212.	11.1	580
12	Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials, 2012, 11, 986-994.	13.3	561
13	Stretchable Interconnects for Elastic Electronic Surfaces. Proceedings of the IEEE, 2005, 93, 1459-1467.	16.4	558
14	Syringe-injectable electronics. Nature Nanotechnology, 2015, 10, 629-636.	15.6	543
15	Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations. ACS Applied Materials & Interfaces, 2013, 5, 10418-10422.	4.0	520
16	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
17	A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 2008, 56, 467-486.	2.3	465
18	Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Advanced Materials, 2018, 30, e1801541.	11.1	444

#	Article	IF	CITATIONS
19	Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 2009, 46, 3282-3289.	1.3	441
20	Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021, 374, 212-216.	6.0	410
21	Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 2007, 91, .	1.5	395
22	Sandwich test specimens for measuring interface crack toughness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107, 135-143.	2.6	381
23	Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter, 2012, 8, 285-288.	1.2	373
24	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	3.3	372
25	Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nature Communications, 2014, 5, 3121.	5.8	367
26	3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Advanced Materials, 2017, 29, 1604827.	11.1	364
27	Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Applied Physics Letters, 2006, 88, 204103.	1.5	363
28	Hybrid Hydrogels with Extremely High Stiffness and Toughness. ACS Macro Letters, 2014, 3, 520-523.	2.3	354
29	Fracture of electrodes in lithium-ion batteries caused by fast charging. Journal of Applied Physics, 2010, 108, .	1.1	348
30	Metal films on polymer substrates stretched beyond 50%. Applied Physics Letters, 2007, 91, .	1.5	345
31	Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 2007, 76, .	1.1	327
32	A soft, bistable valve for autonomous control of soft actuators. Science Robotics, 2018, 3, .	9.9	316
33	Dielectric Elastomer Generators: How Much Energy Can Be Converted?. IEEE/ASME Transactions on Mechatronics, 2011, 16, 33-41.	3.7	303
34	Stiff, strong, and tough hydrogels with good chemical stability. Journal of Materials Chemistry B, 2014, 2, 6708-6713.	2.9	302
35	Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study. Nano Letters, 2011, 11, 2962-2967.	4.5	301
36	Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation. Physical Review Letters, 2010, 104, 178302.	2.9	300

#	Article	IF	CITATIONS
37	Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013, 61, 611-628.	2.3	298
38	Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Applied Physics Letters, 2014, 105, .	1.5	292
39	A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 2010, 6, 784.	1.2	288
40	Stress-relaxation behavior in gels with ionic and covalent crosslinks. Journal of Applied Physics, 2010, 107, 63509.	1.1	287
41	Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 2013, 34, 8042-8048.	5.7	282
42	Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009, 94, .	1.5	279
43	Large Plastic Deformation in Highâ€Capacity Lithiumâ€Ion Batteries Caused by Charge and Discharge. Journal of the American Ceramic Society, 2011, 94, s226.	1.9	276
44	Topological Adhesion of Wet Materials. Advanced Materials, 2018, 30, e1800671.	11.1	276
45	Electronic skin: architecture and components. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 326-334.	1.3	275
46	High ductility of a metal film adherent on a polymer substrate. Applied Physics Letters, 2005, 87, 161910.	1.5	262
47	Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A238-A243.	1.3	256
48	Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids, 2011, 59, 2259-2278.	2.3	253
49	Stretchable materials of high toughness and low hysteresis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5967-5972.	3.3	253
50	Mechanisms of large actuation strain in dielectric elastomers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 504-515.	2.4	252
51	Buckling of Elastomeric Beams Enables Actuation of Soft Machines. Advanced Materials, 2015, 27, 6323-6327.	11.1	244
52	Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 142 To 1.5	d (fluoride-he 242
	Steady-state cracking in brittle substrates beneath adherent films. International Journal of Solids and		

99	Structures, 1989, 25, 1337-1353.	1.9	239
54	Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 2010, 58, 558-577.	2.3	237

#	Article	IF	CITATIONS
55	Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter, 2012, 8, 6167.	1.2	237
56	Using indentation to characterize the poroelasticity of gels. Applied Physics Letters, 2010, 96, .	1.5	236
57	Electroluminescence of Giant Stretchability. Advanced Materials, 2016, 28, 4480-4484.	11.1	230
58	Highly Stretchable and Transparent Ionogels as Nonvolatile Conductors for Dielectric Elastomer Transducers. ACS Applied Materials & Interfaces, 2014, 6, 7840-7845.	4.0	226
59	Buckling Pneumatic Linear Actuators Inspired by Muscle. Advanced Materials Technologies, 2016, 1, 1600055.	3.0	226
60	Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 2008, 104, .	1.1	222
61	The effect of film thickness on the failure strain of polymer-supported metal films. Acta Materialia, 2010, 58, 1679-1687.	3.8	221
62	Fatigue fracture of tough hydrogels. Extreme Mechanics Letters, 2017, 15, 91-96.	2.0	209
63	Bonding dissimilar polymer networks in various manufacturing processes. Nature Communications, 2018, 9, 846.	5.8	209
64	Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing. Advanced Materials, 2018, 30, e1800468.	11.1	209
65	Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Letters, 2012, 12, 5039-5047.	4.5	206
66	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
67	Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters, 2009, 95, .	1.5	205
68	Resonant behavior of a membrane of a dielectric elastomer. International Journal of Solids and Structures, 2010, 47, 3254-3262.	1.3	202
69	Model of dissipative dielectric elastomers. Journal of Applied Physics, 2012, 111, .	1.1	200
70	Functional hydrogel coatings. National Science Review, 2021, 8, nwaa254.	4.6	191
71	Maximizing the Energy Density of Dielectric Elastomer Generators Using Equiâ€Biaxial Loading. Advanced Functional Materials, 2013, 23, 5056-5061.	7.8	189
72	lonoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367, 773-776.	6.0	188

#	Article	IF	CITATIONS
73	Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter, 2010, 6, 6004.	1.2	186
74	Mechanics of stretchable electronics and soft machines. MRS Bulletin, 2012, 37, 218-225.	1.7	185
75	Photodetachable Adhesion. Advanced Materials, 2019, 31, e1806948.	11.1	181
76	Selfâ€Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation. Small, 2019, 15, e1804651.	5.2	180
77	Ionic cable. Extreme Mechanics Letters, 2015, 3, 59-65.	2.0	179
78	Digital logic for soft devices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7750-7759.	3.3	170
79	Delamination Specimens for Orthotropic Materials. Journal of Applied Mechanics, Transactions ASME, 1990, 57, 627-634.	1.1	163
80	Averting cracks caused by insertion reaction in lithium–ion batteries. Journal of Materials Research, 2010, 25, 1007-1010.	1.2	161
81	Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters, 2012, 100, .	1.5	161
82	Reactive Flow in Silicon Electrodes Assisted by the Insertion of Lithium. Nano Letters, 2012, 12, 4397-4403.	4.5	160
83	Compliant thin film patterns of stiff materials as platforms for stretchable electronics. Journal of Materials Research, 2005, 20, 3274-3277.	1.2	157
84	Nonlinear oscillation of a dielectric elastomer balloon. Polymer International, 2010, 59, 378-383.	1.6	157
85	Fatigue of double-network hydrogels. Engineering Fracture Mechanics, 2018, 187, 74-93.	2.0	156
86	Inelastic hosts as electrodes for high-capacity lithium-ion batteries. Journal of Applied Physics, 2011, 109, .	1.1	151
87	Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries. Nano Letters, 2013, 13, 5570-5577.	4.5	151
88	Flaw sensitivity of highly stretchable materials. Extreme Mechanics Letters, 2017, 10, 50-57.	2.0	151
89	Fatigue fracture of hydrogels. Extreme Mechanics Letters, 2017, 10, 24-31.	2.0	151
90	Hydrogel Paint. Advanced Materials, 2019, 31, e1903062.	11.1	146

#	Article	IF	CITATIONS
91	Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	8.3	146
92	Stretchable wavy metal interconnects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1723-1725.	0.9	144
93	Propagation of instability in dielectric elastomers. International Journal of Solids and Structures, 2008, 45, 3739-3750.	1.3	143
94	NONEQUILIBRIUM THERMODYNAMICS OF DIELECTRIC ELASTOMERS. International Journal of Applied Mechanics, 2011, 03, 203-217.	1.3	143
95	Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures. Journal of Power Sources, 2012, 218, 6-14.	4.0	142
96	From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter, 2012, 8, 3393.	1.2	139
97	The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer. Applied Physics Letters, 2012, 101, .	1.5	135
98	Cracking of Laminates Subjected to Biaxial Tensile Stresses. Journal of the American Ceramic Society, 1996, 79, 2127-2133.	1.9	133
99	A soft ring oscillator. Science Robotics, 2019, 4, .	9.9	128
100	Polyacrylamide hydrogels. I. Network imperfection. Journal of the Mechanics and Physics of Solids, 2019, 131, 43-55.	2.3	128
101	Method to analyze programmable deformation of dielectric elastomer layers. Applied Physics Letters, 2008, 93, .	1.5	127
102	Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida Sinica, 2012, 25, 441-458.	1.0	127
103	Mechanics of thin-film transistors and solar cells on flexible substrates. Solar Energy, 2006, 80, 687-693.	2.9	125
104	Natural rubber for sustainable high-power electrical energy generation. RSC Advances, 2014, 4, 27905-27913.	1.7	125
105	Epitaxial films stabilized by long-range forces. Physical Review B, 1998, 58, 5116-5120.	1.1	120
106	Persistent Step-Flow Growth of Strained Films on Vicinal Substrates. Physical Review Letters, 2005, 95, 095501.	2.9	119
107	New directions in mechanics. Mechanics of Materials, 2005, 37, 231-259.	1.7	118
108	Complex interplay of nonlinear processes in dielectric elastomers. Physical Review E, 2012, 85, 051801.	0.8	118

#	Article	IF	CITATIONS
109	Wearable and Washable Conductors for Active Textiles. ACS Applied Materials & Interfaces, 2017, 9, 25542-25552.	4.0	118
110	Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics, 2010, 108, .	1.1	116
111	Rational Design of Mechanoâ€Responsive Optical Materials by Fine Tuning the Evolution of Strainâ€Dependent Wrinkling Patterns. Advanced Optical Materials, 2013, 1, 381-388.	3.6	115
112	Creasing instability of elastomer films. Soft Matter, 2012, 8, 1301-1304.	1.2	114
113	Dielectric elastomer actuators with elastomeric electrodes. Applied Physics Letters, 2012, 101, 091907.	1.5	111
114	A finite element method for transient analysis of concurrent large deformation and mass transport in gels. Journal of Applied Physics, 2009, 105, .	1.1	110
115	Stiff subcircuit islands of diamondlike carbon for stretchable electronics. Journal of Applied Physics, 2006, 100, 014913.	1.1	109
116	Method for measuring energy generation and efficiency of dielectric elastomer generators. Applied Physics Letters, 2011, 99, .	1.5	106
117	Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates. Journal of Materials Research, 2009, 24, 379-385.	1.2	105
118	Fatigue fracture of nearly elastic hydrogels. Soft Matter, 2018, 14, 3563-3571.	1.2	105
119	Fatigue Fracture of Self-Recovery Hydrogels. ACS Macro Letters, 2018, 7, 312-317.	2.3	105
120	Long-distance propagation of forces in a cell. Biochemical and Biophysical Research Communications, 2005, 328, 1133-1138.	1.0	103
121	Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter, 2012, 8, 1492-1498.	1.2	101
122	Printing Hydrogels and Elastomers in Arbitrary Sequence with Strong Adhesion. Advanced Functional Materials, 2019, 29, 1901721.	7.8	101
123	Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening. Applied Physics Letters, 2012, 100, .	1.5	100
124	Elastomeric substrates with embedded stiff platforms for stretchable electronics. Applied Physics Letters, 2013, 102, .	1.5	98
125	Experimental determination of equations of state for ideal elastomeric gels. Soft Matter, 2012, 8, 8121.	1.2	97
126	Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter, 2015, 11, 8253-8261.	1.2	97

#	Article	IF	CITATIONS
127	Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries. Journal of Power Sources, 2014, 270, 569-575.	4.0	96
128	Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1055-1060.	2.4	94
129	Adhesion between highly stretchable materials. Soft Matter, 2016, 12, 1093-1099.	1.2	93
130	Agile and Resilient Insect-Scale Robot. Soft Robotics, 2019, 6, 133-141.	4.6	93
131	Temporal evolution and instability in a viscoelastic dielectric elastomer. Journal of the Mechanics and Physics of Solids, 2015, 76, 47-64.	2.3	92
132	Dielectric elastomer membranes undergoing inhomogeneous deformation. Journal of Applied Physics, 2009, 106, .	1.1	91
133	Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12332-12337.	3.3	89
134	Indentation of polydimethylsiloxane submerged in organic solvents. Journal of Materials Research, 2011, 26, 785-795.	1.2	87
135	On designing dielectric elastomer actuators. Journal of Applied Physics, 2008, 104, .	1.1	86
136	Fracture Toughness and Fatigue Threshold of Tough Hydrogels. ACS Macro Letters, 2019, 8, 17-23.	2.3	86
137	Performance of dissipative dielectric elastomer generators. Journal of Applied Physics, 2012, 111, .	1.1	85
138	Fiber-reinforced tough hydrogels. Extreme Mechanics Letters, 2014, 1, 90-96.	2.0	85
139	Modeling and simulation of buckling of polymeric membrane thin film gel. Computational Materials Science, 2010, 49, S60-S64.	1.4	84
140	A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. International Journal of Solids and Structures, 2012, 49, 2187-2194.	1.3	83
141	Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection. Advanced Materials, 2018, 30, e1804916.	11.1	79
142	Stickâ€On Large‧train Sensors for Soft Robots. Advanced Materials Interfaces, 2019, 6, 1900985.	1.9	79
143	Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter, 2021, 4, 1935-1946.	5.0	78
144	Phase-transforming and switchable metamaterials. Extreme Mechanics Letters, 2016, 6, 1-9.	2.0	77

#	Article	IF	CITATIONS
145	Organic liquid-crystal devices based on ionic conductors. Materials Horizons, 2017, 4, 1102-1109.	6.4	76
146	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	4.0	76
147	Creases in soft tissues generated by growth. Europhysics Letters, 2011, 95, 64002.	0.7	74
148	Two types of transitions to wrinkles in dielectric elastomers. Soft Matter, 2012, 8, 8840.	1.2	74
149	MECHANICS AND THERMODYNAMICS OF BRITTLE INTERFACIAL FAILURE IN BIMATERIAL SYSTEMS. , 1990, , 269-294.		73
150	Delamination of stiff islands patterned on stretchable substrates. International Journal of Materials Research, 2007, 98, 717-722.	0.1	73
151	Rupture of a highly stretchable acrylic dielectric elastomer. Journal of Applied Physics, 2012, 111, .	1.1	73
152	Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. International Journal of Solids and Structures, 2013, 50, 1120-1129.	1.3	73
153	Sandwich-Lithiation and Longitudinal Crack in Amorphous Silicon Coated on Carbon Nanofibers. ACS Nano, 2012, 6, 9158-9167.	7.3	72
154	Localization of Folds and Cracks in Thin Metal Films Coated on Flexible Elastomer Foams. Advanced Materials, 2013, 25, 3117-3121.	11.1	72
155	A model of ideal elastomeric gels for polyelectrolyte gels. Soft Matter, 2014, 10, 2582.	1.2	72
156	Surface Energy as a Barrier to Creasing of Elastomer Films: An Elastic Analogy to Classical Nucleation. Physical Review Letters, 2012, 109, 038001.	2.9	71
157	Reactive flow in solids. Journal of the Mechanics and Physics of Solids, 2013, 61, 61-77.	2.3	70
158	Poroelasticity of a covalently crosslinked alginate hydrogel under compression. Journal of Applied Physics, 2010, 108, .	1.1	69
159	Electromechanical phase transition in dielectric elastomers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1014-1040.	1.0	69
160	Nano-optomechanical Actuator and Pull-Back Instability. ACS Nano, 2013, 7, 1676-1681.	7.3	69
161	Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives. ACS Applied Materials & Interfaces, 2016, 8, 2071-2077.	4.0	69
162	Polyacrylamide hydrogels. II. elastic dissipater. Journal of the Mechanics and Physics of Solids, 2019, 133, 103737.	2.3	69

#	Article	IF	CITATIONS
163	Extension limit, polarization saturation, and snap-through instability of dielectric elastomers. International Journal of Smart and Nano Materials, 2011, 2, 59-67.	2.0	66
164	Equations of state for ideal elastomeric gels. Europhysics Letters, 2012, 97, 34009.	0.7	66
165	Tough Photoluminescent Hydrogels Doped with Lanthanide. Macromolecular Rapid Communications, 2015, 36, 465-471.	2.0	66
166	Covalent Topological Adhesion. ACS Macro Letters, 2019, 8, 754-758.	2.3	65
167	Fatigue-Resistant elastomers. Journal of the Mechanics and Physics of Solids, 2020, 134, 103751.	2.3	65
168	Osmotic collapse of a void in an elastomer: breathing, buckling and creasing. Soft Matter, 2010, 6, 5770.	1.2	63
169	Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Applied Physics Letters, 2014, 104, .	1.5	63
170	lonotronic Luminescent Fibers, Fabrics, and Other Configurations. Advanced Materials, 2020, 32, e2005545.	11.1	63
171	Electromechanical instability in semicrystalline polymers. Applied Physics Letters, 2009, 95, .	1.5	62
172	Hydrogel–mesh composite for wound closure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
173	Poroelastic relaxation indentation of thin layers of gels. Journal of Applied Physics, 2011, 110, 086103.	1.1	61
174	Bursting drops in solid dielectrics caused by high voltages. Nature Communications, 2012, 3, 1157.	5.8	60
175	Instant, Tough, Noncovalent Adhesion. ACS Applied Materials & amp; Interfaces, 2019, 11, 40749-40757.	4.0	60
176	Force generated by a swelling elastomer subject to constraint. Journal of Applied Physics, 2010, 107, 103535.	1.1	59
177	Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. Applied Physics Letters, 2008, 92, .	1.5	56
178	Force and stroke of a hydrogel actuator. Soft Matter, 2013, 9, 8504.	1.2	56
179	Dielectric elastomers of interpenetrating networks. Applied Physics Letters, 2009, 95, .	1.5	55
180	A Lesson from Plants: High‣peed Soft Robotic Actuators. Advanced Science, 2020, 7, 1903391.	5.6	55

#	Article	IF	CITATIONS
181	Inorganic islands on a highly stretchable polyimide substrate. Journal of Materials Research, 2009, 24, 3338-3342.	1.2	54
182	Nonlinear deformation analysis of a dielectric elastomer membrane–spring system. Smart Materials and Structures, 2010, 19, 085017.	1.8	54
183	Snap-through Expansion of a Gas Bubble in an Elastomer. Journal of Adhesion, 2011, 87, 466-481.	1.8	54
184	Indentation: A simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels. Journal of Materials Research, 2012, 27, 152-160.	1.2	52
185	Lowâ€Voltage Reversible Electroadhesion of Ionoelastomer Junctions. Advanced Materials, 2020, 32, e2000600.	11.1	52
186	Neural interfaces by hydrogels. Extreme Mechanics Letters, 2019, 30, 100510.	2.0	51
187	Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	50
188	Micromechanics of macroelectronics. Particuology: Science and Technology of Particles, 2005, 3, 321-328.	0.4	48
189	Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	48
190	Flawâ€Insensitive Hydrogels under Static and Cyclic Loads. Macromolecular Rapid Communications, 2019, 40, e1800883.	2.0	48
191	Creases and wrinkles on the surface of a swollen gel. Journal of Applied Physics, 2013, 114, .	1.1	46
192	The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter, 2014, 10, 6520.	1.2	46
193	High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: Actuation processes. Journal of the Mechanics and Physics of Solids, 2017, 105, 81-94.	2.3	46
194	Topoarchitected polymer networks expand the space of material properties. Nature Communications, 2022, 13, 1622.	5.8	46
195	Channel cracks in a hermetic coating consisting of organic and inorganic layers. Applied Physics Letters, 2007, 90, 111910.	1.5	44
196	Strength and toughness of adhesion of soft materials measured in lap shear. Journal of the Mechanics and Physics of Solids, 2020, 143, 103988.	2.3	44
197	Morphological Evolution of Si Nanowires upon Lithiation: A First-Principles Multiscale Model. Nano Letters, 2013, 13, 2011-2015.	4.5	43
198	Strong and Degradable Adhesion of Hydrogels. ACS Applied Bio Materials, 2019, 2, 1781-1786.	2.3	43

#	Article	IF	CITATIONS
199	Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.	2.0	43
200	A finite element method for dielectric elastomer transducers. Acta Mechanica Solida Sinica, 2012, 25, 459-466.	1.0	42
201	REACTIVE FLOW IN LARGE-DEFORMATION ELECTRODES OF LITHIUM-ION BATTERIES. International Journal of Applied Mechanics, 2012, 04, 1250023.	1.3	41
202	Stretchable Seal. ACS Applied Materials & amp; Interfaces, 2018, 10, 27333-27343.	4.0	40
203	Exact Analysis of Ligand-Induced Dimerization of Monomeric Receptors. Analytical Chemistry, 2008, 80, 5550-5555.	3.2	39
204	Tearing a hydrogel of complex rheology. Journal of the Mechanics and Physics of Solids, 2019, 125, 749-761.	2.3	39
205	Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation. ACS Applied Materials & Interfaces, 2018, 10, 43252-43261.	4.0	38
206	Giant Poisson's Effect for Wrinkleâ€Free Stretchable Transparent Electrodes. Advanced Materials, 2019, 31, e1902955.	11.1	38
207	Concurrent electromigration and creep in lead-free solder. Journal of Applied Physics, 2011, 110, .	1.1	36
208	Influence of the Contact Area on the Current Density across Molecular Tunneling Junctions Measured with EGaIn Top-Electrodes. Chemistry of Materials, 2018, 30, 129-137.	3.2	35
209	Smoothening creases on surfaces of strain-stiffening materials. Journal of the Mechanics and Physics of Solids, 2015, 74, 68-79.	2.3	33
210	Split singularities and the competition between crack penetration and debond at a bimaterial interface. International Journal of Solids and Structures, 2007, 44, 4559-4573.	1.3	32
211	Controlled formation and disappearance of creases. Materials Horizons, 2014, 1, 207-213.	6.4	32
212	Creases on the interface between two soft materials. Soft Matter, 2014, 10, 303-311.	1.2	32
213	The Stiffness-Threshold Conflict in Polymer Networks and a Resolution. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	32
214	Dynamics of Step Bunching in Heteroepitaxial Growth on Vicinal Substrates. Physical Review Letters, 2007, 99, 055503.	2.9	31
215	Elastic leak of a seal. Extreme Mechanics Letters, 2014, 1, 54-61.	2.0	31
216	Stretchable Electrets: Nanoparticle–Elastomer Composites. Nano Letters, 2020, 20, 4580-4587.	4.5	31

#	Article	IF	CITATIONS
217	Fatigue-resistant polyurethane elastomer composites. Extreme Mechanics Letters, 2021, 48, 101434.	2.0	31
218	Drying-induced bifurcation in a hydrogel-actuated nanostructure. Journal of Applied Physics, 2008, 104, .	1.1	30
219	Highly deformable actuators made of dielectric elastomers clamped by rigid rings. Journal of Applied Physics, 2014, 115, .	1.1	29
220	Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters, 2020, 39, 100813.	2.0	29
221	Reversible Electrochemically Triggered Delamination Blistering of Hydrogel Films on Micropatterned Electrodes. Advanced Functional Materials, 2016, 26, 3218-3225.	7.8	28
222	Post-wrinkle bifurcations in elastic bilayers with modest contrast in modulus. Extreme Mechanics Letters, 2017, 11, 30-36.	2.0	28
223	Fundamental Limits to the Electrochemical Impedance Stability of Dielectric Elastomers in Bioelectronics. Nano Letters, 2020, 20, 224-233.	4.5	28
224	Soft kink valves. Journal of the Mechanics and Physics of Solids, 2019, 131, 230-239.	2.3	27
225	Debonding and fracture of ceramic islands on polymer substrates. Journal of Applied Physics, 2012, 111,	1.1	25
226	Topological adhesion II. Stretchable adhesion. Extreme Mechanics Letters, 2020, 40, 100891.	2.0	25
227	Swellable elastomers under constraint. Journal of Applied Physics, 2012, 112, .	1.1	24
228	Formation of high aspect ratio wrinkles and ridges on elastic bilayers with small thickness contrast. Soft Matter, 2018, 14, 8545-8551.	1.2	24
229	Computational model of deformable lenses actuated by dielectric elastomers. Journal of Applied Physics, 2013, 114, 104104.	1.1	23
230	Extrusion, slide, and rupture of an elastomeric seal. Journal of the Mechanics and Physics of Solids, 2017, 99, 289-303.	2.3	23
231	Thermomechanical criteria for overlay alignment in flexible thin-film electronic circuits. Applied Physics Letters, 2006, 88, 011905.	1.5	22
232	Chemically Coupled Interfacial Adhesion in Multimaterial Printing of Hydrogels and Elastomers. ACS Applied Materials & Interfaces, 2020, 12, 31002-31009.	4.0	22
233	Laminar tendon composites with enhanced mechanical properties. Journal of Materials Science, 2015, 50, 2616-2625.	1.7	20
234	A Transparent Membrane for Active Noise Cancelation. Advanced Functional Materials, 2018, 28, 1800653.	7.8	20

#	Article	IF	CITATIONS
235	Effects of Stiff Film Pattern Geometry on Surface Buckling Instabilities of Elastic Bilayers. ACS Applied Materials & Interfaces, 2018, 10, 23406-23413.	4.0	20
236	Molecular Staples for Tough and Stretchable Adhesion in Integrated Soft Materials. Advanced Healthcare Materials, 2019, 8, e1900810.	3.9	20
237	Flaw-sensitivity of a tough hydrogel under monotonic and cyclic loads. Journal of the Mechanics and Physics of Solids, 2021, 153, 104483.	2.3	20
238	Self-assembled nanocomposites of high water content and load-bearing capacity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
239	Crease in a ring of a pH-sensitive hydrogel swelling under constraint. International Journal of Solids and Structures, 2013, 50, 920-927.	1.3	19
240	Polyacrylamide hydrogels. III. Lap shear and peel. Journal of the Mechanics and Physics of Solids, 2021, 150, 104348.	2.3	19
241	Stress and strain in ferroelectrics. Current Opinion in Solid State and Materials Science, 1998, 3, 486-489.	5.6	18
242	Method to analyze dislocation injection from sharp features in strained silicon structures. Applied Physics Letters, 2006, 89, 261912.	1.5	18
243	Measuring the elastic modulus of microgels using microdrops. Soft Matter, 2012, 8, 10032.	1.2	18
244	Elastocapillary Crease. Physical Review Letters, 2019, 122, 098003.	2.9	18
245	Charge localization instability in a highly deformable dielectric elastomer. Applied Physics Letters, 2014, 104, 022905.	1.5	17
246	Osmocapillary phase separation. Extreme Mechanics Letters, 2016, 7, 27-33.	2.0	17
247	Saturated voids in interconnect lines due to thermal strains and electromigration. Journal of Applied Physics, 2005, 98, 074501.	1.1	16
248	Stretching and polarizing a dielectric gel immersed in a solvent. International Journal of Solids and Structures, 2008, 45, 4021-4031.	1.3	16
249	Polyacrylamide hydrogels. IV. Near-perfect elasticity and rate-dependent toughness. Journal of the Mechanics and Physics of Solids, 2022, 158, 104675.	2.3	16
250	Adhesive anastomosis for organ transplantation. Bioactive Materials, 2022, 13, 260-268.	8.6	16
251	Kinetics of swelling under constraint. Journal of Applied Physics, 2013, 114, 064901.	1.1	15
252	Temperature sensing using junctions between mobile ions and mobile electrons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15

#	Article	IF	CITATIONS
253	The Determination of the Location of Contact Electrification-Induced Discharge Events. Journal of Physical Chemistry C, 2010, 114, 20885-20895.	1.5	14
254	Brownian Motion of Molecular Probes in Supercooled Liquids. Physical Review Letters, 2015, 114, 224301.	2.9	14
255	Electromechanical Catastrophe. International Journal of Applied Mechanics, 2016, 08, 1640005.	1.3	14
256	Dual-primer adhesion of polymer networks of dissimilar chemistries. Extreme Mechanics Letters, 2020, 38, 100756.	2.0	14
257	Photoinitiator-grafted polymer chains for integrating hydrogels with various materials. Cell Reports Physical Science, 2021, 2, 100463.	2.8	14
258	Crack Tunneling in Cement Sheath of Hydrocarbon Well. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	13
259	Hydrolytic crack in a rubbery network. Extreme Mechanics Letters, 2019, 31, 100531.	2.0	13
260	Fast healing of ionic bonds in tough hydrogels under an acoustic excitation. Extreme Mechanics Letters, 2019, 33, 100572.	2.0	13
261	Soft sensor for full dentition dynamic bite force. Extreme Mechanics Letters, 2020, 34, 100592.	2.0	13
262	Polymer-filled macroporous hydrogel for low friction. Extreme Mechanics Letters, 2020, 38, 100742.	2.0	13
263	All-Solid Ionic Eye. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	13
264	Super-elastic Gold Conductors on Elastomeric Substrates. Materials Research Society Symposia Proceedings, 2003, 769, 1031.	0.1	12
265	Multifunctional actuation systems responding to chemical gradients. Soft Matter, 2012, 8, 8289.	1.2	12
266	Islands stretch test for measuring the interfacial fracture energy between a hard film and a soft substrate. Journal of Applied Physics, 2013, 113, .	1.1	12
267	A Method for Making Elastic Metal Interconnects. Materials Research Society Symposia Proceedings, 2003, 769, 6121.	0.1	11
268	Methodology for Avoidance of Ratcheting-Induced Stable Cracking (RISC) in Microelectronic Devices. , 0, , .		11
269	Split singularities and dislocation injection in strained silicon. Journal of Applied Physics, 2007, 102, 023502.	1.1	11
270	Singular stress fields at corners in flip-chip packages. Engineering Fracture Mechanics, 2012, 86, 38-47.	2.0	11

#	Article	IF	CITATIONS
271	Degradable Plastics Are Vulnerable to Cracks. Engineering, 2021, 7, 624-629.	3.2	11
272	Deformable interconnects for conformal integrated circuits. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	10
273	Templated Self-Assembly Over Patterned Electrodes by an Applied Electric Field: Geometric Constraints and Diversity of Materials. Journal of Microelectromechanical Systems, 2008, 17, 900-910.	1.7	10
274	Elastic Leak for a Better Seal. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	10
275	Shear, dilation, and swap: Mixing in the limit of fast diffusion. Journal of the Mechanics and Physics of Solids, 2016, 96, 48-64.	2.3	10
276	Pattern formation in plastic liquid films on elastomers by ratcheting. Soft Matter, 2016, 12, 3820-3827.	1.2	10
277	Gelation kinetics of alginate chains through covalent bonds. Extreme Mechanics Letters, 2020, 40, 100898.	2.0	10
278	Inelasticity increases the critical strain for the onset of creases on hydrogels. Extreme Mechanics Letters, 2020, 40, 100966.	2.0	10
279	Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion. Extreme Mechanics Letters, 2020, 39, 100797.	2.0	10
280	Anti-icing propylene-glycol materials. Extreme Mechanics Letters, 2021, 44, 101225.	2.0	10
281	Subdural neural interfaces for long-term electrical recording, optical microscopy and magnetic resonance imaging. Biomaterials, 2022, 281, 121352.	5.7	10
282	Cracks outrun erosion in degradable polymers. Extreme Mechanics Letters, 2020, 40, 100978.	2.0	9
283	Topological prime. Science China Technological Sciences, 2020, 63, 1314-1322.	2.0	9
284	How Stretchable Can We Make Thin Metal Films?. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	8
285	Mechanics of a process to assemble microspheres on a patterned electrode. Applied Physics Letters, 2006, 88, 144101.	1.5	8
286	Mixing by shear, dilation, swap, and diffusion. Journal of the Mechanics and Physics of Solids, 2018, 112, 253-272.	2.3	8
287	Transduction between magnets and ions. Materials Horizons, 2021, 8, 1959-1965.	6.4	8
288	Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43, 101182.	2.0	8

#	Article	IF	CITATIONS
289	Amorphous Silicon Thin Film Transistors on Kapton Fibers. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	7
290	Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxy. Physical Review B, 2006, 74, .	1.1	7
291	The effect of coating in increasing the critical size of islands on a compliant substrate. Applied Physics Letters, 2007, 90, 211912.	1.5	7
292	Optomechanics of Soft Materials. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	7
293	Plasticity retards the formation of creases. Journal of the Mechanics and Physics of Solids, 2019, 123, 305-314.	2.3	7
294	Electric field concentration in hydrogel–elastomer devices. Extreme Mechanics Letters, 2020, 34, 100597.	2.0	7
295	Toughness of a composite in which sliding between fibers and matrix is rate-sensitive. Extreme Mechanics Letters, 2021, 46, 101317.	2.0	7
296	Mechanics of Supercooled Liquids. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	6
297	Peel of elastomers of various thicknesses and widths. Extreme Mechanics Letters, 2021, 46, 101325.	2.0	6
298	A printed highly stretchable supercapacitor by a combination of carbon ink and polymer network. Extreme Mechanics Letters, 2021, 49, 101459.	2.0	6
299	Dynamics of terraces on a silicon surface due to the combined action of strain and electric current. Journal of the Mechanics and Physics of Solids, 2008, 56, 267-278.	2.3	5
300	Localized Deformation in Plastic Liquids on Elastomers. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	5
301	Composites retard hydrolytic crack growth. Extreme Mechanics Letters, 2021, 48, 101433.	2.0	5
302	A thermodynamic model of phase transition of poly(N-isopropylacrylamide) hydrogels in ionic solutions. International Journal of Solids and Structures, 2022, 257, 111434.	1.3	5
303	An Inverter Woven from Flat Component Fibers for e-Textile Applications. Materials Research Society Symposia Proceedings, 2003, 769, 9101.	0.1	4
304	Creep of Al Underlayer Determined by Channel Cracking of Topical Si3N4Film. Materials and Manufacturing Processes, 2007, 22, 170-174.	2.7	4
305	A Soft Stretchable Sensor: Towards Peripheral Nerve Signal Sensing. MRS Advances, 2018, 3, 1597-1602.	0.5	4
306	Hydrogels: Hydrogel Paint (Adv. Mater. 39/2019). Advanced Materials, 2019, 31, 1970276.	11.1	4

#	Article	IF	CITATIONS
307	High-throughput experiments for rare-event rupture of materials. Matter, 2022, 5, 654-665.	5.0	4
308	Method of Fabricating Multiple-Frequency Film Bulk Acoustic Resonators in a Single Chip. , 2006, , .		3
309	Mechanistic Study for Facile Electrochemical Patterning of Surfaces with Metal Oxides. ACS Nano, 2016, 10, 5321-5325.	7.3	3

Hydrogels: Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf H.1 / Overlock 10 T

311	Optoionic Sensing. Small, 2022, 18, e2103882.	5.2	3
312	Strain-stiffening seal. Soft Matter, 2022, 18, 2992-3003.	1.2	3
313	A Chemical Pump that Generates Highâ€Pressure Gas by Transmitting Liquid Fuel against Pressure Gradient. Advanced Intelligent Systems, 2022, 4, .	3.3	2
314	Mechanical behavior of a pH-sensitive hydrogel ring used in a micro-optical device. Proceedings in Applied Mathematics and Mechanics, 2012, 12, 411-412.	0.2	1
315	Modeling guided design of dielectric elastomer generators and actuators. Proceedings of SPIE, 2012, , .	0.8	1

Linear Actuators: Buckling Pneumatic Linear Actuators Inspired by Muscle (Adv. Mater. Technol.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 3

317	How does a glass fabric tear under cyclic force?. Journal of the Mechanics and Physics of Solids, 2022, 158, 104659.	2.3	1	
-----	--	-----	---	--