
Rui Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186115/publications.pdf Version: 2024-02-01

Ριι Ρλη

#	Article	IF	CITATIONS
1	Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 1743-1753.	4.0	147
2	Extremely high Cassie–Baxter state stability of superhydrophobic surfaces <i>via</i> precisely tunable dual-scale and triple-scale micro–nano structures. Journal of Materials Chemistry A, 2019, 7, 18050-18062.	5.2	86
3	An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection. Nanoscale, 2019, 11, 8940-8949.	2.8	55
4	Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie–Baxter Stability and Durability. Langmuir, 2019, 35, 16693-16711.	1.6	48
5	Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser. Journal of Laser Applications, 2019, 31, .	0.8	39
6	Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment. Sensors and Actuators B: Chemical, 2021, 326, 128826.	4.0	29
7	Homogenization of the zirconium carbide–titanium interface domain. Scripta Materialia, 2016, 112, 42-45.	2.6	26
8	A short review on functionalized metallic surfaces by ultrafast laser micromachining. International Journal of Advanced Manufacturing Technology, 2022, 119, 6919-6948.	1.5	23
9	Three-Dimensional and In Situ-Activated Spinel Oxide Nanoporous Clusters Derived from Stainless Steel for Efficient and Durable Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 13971-13981.	4.0	21
10	Laserâ€Assisted Doping and Architecture Engineering of Fe ₃ O ₄ Nanoparticles for Highly Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3562-3570.	3.6	19
11	Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces. Journal of Materials Chemistry A, 2020, 8, 6647-6660.	5.2	19
12	Interfacial energy as the driving force for diffusion bonding of ceramics. Acta Materialia, 2020, 186, 405-414.	3.8	19
13	Design of the multiple transition metals interlayer process to diffusion bond ZrC ceramics. Materials and Design, 2018, 137, 47-55.	3.3	15
14	Ultrafast laser hybrid fabrication of hierarchical 3D structures of nanorods on microcones for superhydrophobic surfaces with excellent Cassie state stability and mechanical durability. Journal of Laser Applications, 2020, 32, .	0.8	14
15	Cross-diffusion phenomena within a ZrC x – Zr – ZrC x joint. Journal of the European Ceramic Society, 2017, 37, 2779-2786.	2.8	11
16	Pulsed laser-assisted synthesis of defect-rich NiFe-based oxides for efficient oxygen evolution reaction. Journal of Laser Applications, 2020, 32, 022032.	0.8	7
17	Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces. Chinese Science Bulletin, 2019, 64, 1268-1289.	0.4	6
18	Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration. Advanced Optical Technologies, 2020, 9, 89-100.	0.9	4

Rui Pan

#	Article	IF	CITATIONS
19	Flexible control over optical reflection property of metallic surfaces via pulse laser. Journal of Laser Applications, 2019, 31, 022502.	0.8	3
20	The Physiological Basis of Genotypic Variations in Low-Oxygen Stress Tolerance in the Vegetable Sweet Potato. Russian Journal of Plant Physiology, 0, , 1.	0.5	0