Gundula Min-Oo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11860825/publications.pdf

Version: 2024-02-01

430874 677142 1,772 23 18 22 citations g-index h-index papers 23 23 23 3588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular definition of the identity and activation of natural killer cells. Nature Immunology, 2012, 13, 1000-1009.	14.5	265
2	The transcriptional landscape of $\hat{l}\pm\hat{l}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	14.5	256
3	Identification of transcriptional regulators in the mouse immune system. Nature Immunology, 2013, 14, 633-643.	14.5	179
4	Pyruvate kinase deficiency in mice protects against malaria. Nature Genetics, 2003, 35, 357-362.	21.4	122
5	Natural killer cells: walking three paths down memory lane. Trends in Immunology, 2013, 34, 251-258.	6.8	120
6	Respiratory virus–induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium. Journal of Experimental Medicine, 2013, 210, 1929-1936.	8.5	118
7	Pyruvate Kinase Deficiency and Malaria. New England Journal of Medicine, 2008, 358, 1805-1810.	27.0	98
8	Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. Journal of Experimental Medicine, 2014, 211, 2669-2680.	8.5	98
9	Erythrocyte variants and the nature of their malaria protective effect. Cellular Microbiology, 2005, 7, 753-763.	2.1	93
10	Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. Journal of Experimental Medicine, 2014, 211, 1289-1296.	8.5	71
11	Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. Journal of Experimental Medicine, 2007, 204, 511-524.	8.5	69
12	Single gene effects in mouse models of host: pathogen interactions. Journal of Leukocyte Biology, 2005, 77, 868-877.	3.3	59
13	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
14	EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L186-L196.	2.9	47
15	Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. Journal of Experimental Medicine, 2007, 204, 2949-2961.	8.5	31
16	Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Experimental Parasitology, 2010, 125, 315-324.	1.2	29
17	Cysteamine, the Molecule Used To Treat Cystinosis, Potentiates the Antimalarial Efficacy of Artemisinin. Antimicrobial Agents and Chemotherapy, 2010, 54, 3262-3270.	3.2	23
18	Pyruvate kinase deficiency: Correlation between enzyme activity, extent of hemolytic anemia and protection against malaria in independent mouse mutants. Blood Cells, Molecules, and Diseases, 2007, 39, 63-69.	1,4	21

#	Article	IF	CITATIONS
19	The mouse Char10 locus regulates severity of pyruvate kinase deficiency and susceptibility to malaria. PLoS ONE, 2017, 12, e0177818.	2.5	7
20	Sweet Is the Memory of Past Troubles: NK Cells Remember. Current Topics in Microbiology and Immunology, 2015, 395, 147-171.	1.1	6
21	Genetic Control of Host-Pathogen Interactions in Mice. Novartis Foundation Symposium, 2007, 281, 156-168.	1.1	2
22	Genetic analysis in mice identifies cysteamine as a novel partner for artemisinin in the treatment of malaria. Mammalian Genome, 2011, 22, 486-494.	2.2	2
23	Respiratory virus-induced EGFR activation suppresses IRF1-dependent Interferon-λ and antiviral defense in airway epithelium. Journal of Cell Biology, 2013, 202, 2026OIA89.	5.2	1