Mei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11860529/publications.pdf

Version: 2024-02-01

759055 677027 28 482 12 22 citations h-index g-index papers 28 28 28 666 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes. Electrochimica Acta, 2009, 54, 5818-5824.	2.6	79
2	Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach. Electrochemistry Communications, 2010, 12, 351-354.	2.3	48
3	Unprecedented Electrochromic Stability of a-WO _{3–<i>x</i>} Thin Films Achieved by Using a Hybrid-Cationic Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11067-11077.	4.0	44
4	Clicking ferrocene groups to boron-doped diamond electrodes. Chemical Communications, 2009, , 2753.	2.2	42
5	Artificial synapses with a sponge-like double-layer porous oxide memristor. NPG Asia Materials, 2021, 13, .	3.8	31
6	Photochemical Immobilization of Proteins and Peptides on Benzophenone-Terminated Boron-Doped Diamond Surfaces. Langmuir, 2010, 26, 1075-1080.	1.6	30
7	"Clicking―Thiophene on Diamond Interfaces. Preparation of a Conducting Polythiophene/Diamond Hybrid Material. Journal of Physical Chemistry C, 2009, 113, 17082-17086.	1.5	27
8	Stability and Repeatability of a Karst-like Hierarchical Porous Silicon Oxide-Based Memristor. ACS Applied Materials & Diterfaces, 2019, 11, 21734-21740.	4.0	24
9	Covalent modification of boron-doped diamond electrodes with an imidazolium-based ionic liquid. Electrochimica Acta, 2010, 55, 1582-1587.	2.6	23
10	Interface dipole engineering in metal gate/high-k stacks. Science Bulletin, 2012, 57, 2872-2878.	1.7	22
11	Strain-enhanced power conversion efficiency of a BP/SnSe van der Waals heterostructure. Physical Chemistry Chemical Physics, 2020, 22, 14787-14795.	1.3	21
12	Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors. Scientific Reports, 2019, 9, 5081.	1.6	14
13	Barrier Reduction of Lithium Ion Tunneling through Graphene with Hybrid Defects: Firstâ€Principles Calculations. Advanced Theory and Simulations, 2018, 1, 1700009.	1.3	11
14	Wet-chemical approach for the halogenation of hydrogenated boron-doped diamond electrodes. Chemical Communications, 2008, , 6294.	2.2	10
15	Self-Driven Electrochromic Window System Cu/WO <i></i> -Al ³⁺ /GR with Dynamic Optical Modulation and Static Graph Display Functions. ACS Applied Materials & Dynamic Optical Modulation and Static Graph Display Functions. ACS Applied Materials & Dynamic M	4.0	10
16	Thickness Dependence of WO ₃ and NiO _{<i>x</i>} Thin Films in Allâ€6olidâ€6tate Complementary Electrochromic Devices. Energy Technology, 2021, 9, 2100656.	1.8	7
17	Preparation of H-terminated and aminated diamond like carbon surfaces. Rare Metals, 2012, 31, 189-192.	3.6	5
18	Topological superconductors from one-dimensional periodically modulated Majorana chains. Scientific Reports, 2017, 7, 9210.	1.6	5

#	Article	IF	CITATIONS
19	Electrochromic Adaptability of NiO <i></i> Films Modified by Substrate Temperature in Aqueous and Nonâ€Aqueous Electrolytes. Advanced Materials Interfaces, 2022, 9, .	1.9	5
20	Fermi-level pinning in full metal/high-k/SiO2/Si stacks. Journal of Applied Physics, 2017, 122, .	1.1	4
21	Competitive conductive mechanism of interstitial Ag and oxygen vacancies in Ag/Ta2O5/Pt stack. Journal of Applied Physics, 2019, 126, .	1.1	4
22	Wrinkledâ€Surfaceâ€Induced Memristive Behavior of MoS 2 Wrapped GaN Nanowires. Advanced Electronic Materials, 2020, 6, 2000571.	2.6	4
23	GaO <i>_x</i> @GaN Nanowire Arrays on Flexible Graphite Paper with Tunable Persistent Photoconductivity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41916-41925.	4.0	4
24	Clicking cyclophane to boron doped diamond surfaces. Science Bulletin, 2013, 58, 2898-2902.	1.7	3
25	Modulation of resistive switching in Pt/LiCoO2/SiO2/Si stacks. Journal of Materials Science: Materials in Electronics, 2019, 30, 4753-4759.	1.1	2
26	Photoluminescence Properties of GaN Nanowires Grown in a Gradient-Plasma Environment. Journal of Physical Chemistry C, 2020, 124, 16002-16008.	1.5	2
27	Clicking ferrocene to halogenated boron-doped diamond surfaces. Rare Metals, 2013, 32, 100-104.	3.6	1
28	Design and Test of a Multi-Axis Acoustic-Levitation Device for Non-Contact Dust Removal from Precision Instruments. Research in Education Assessment and Learning, 2020, 5, .	0.1	O