Majid Hoseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11860029/publications.pdf

Version: 2024-02-01

686830 839053 20 681 13 18 citations h-index g-index papers 20 20 20 687 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the importance of crystallographic texture in the biocompatibility of titanium based substrate. Journal of Biomedical Materials Research - Part A, 2014, 102, 3631-3638.	2.1	31
2	Realistic Cold Expansion Finite Element Model and Experimental Validations for Aluminium Alloys. Experimental Mechanics, 2014, 54, 841-855.	1.1	7
3	Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1587-1598.	1.1	25
4	Textural evolution of nanostructured AA5083 produced by ARB. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2012, 556, 351-357.	2.6	41
5	Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium. Materials Science & Science & Properties, Microstructure and Processing, 2012, 532, 58-63.	2.6	57
6	Effect of strontium on flow behavior and texture evolution during the hot deformation of Mg–1wt%Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 537, 49-57.	2.6	36
7	Tube extrusion of AZ31 alloy with Sr additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 544, 70-79.	2.6	7
8	Effect of strontium on the texture and mechanical properties of extruded Mgâ€"1%Mn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 168-175.	2.6	54
9	Effect of Sr addition on texture evolution of Mg–3Al–1Zn (AZ31) alloy during extrusion. Materials Science & Science & Properties, Microstructure and Processing, 2011, 528, 3096-3104.	2.6	55
10	Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3573-3580.	2.6	44
11	The influence of Ce on the microstructure and rolling texture of Mg–1%Mn alloy. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3122-3129.	2.6	57
12	The role of grain orientation in microstructure evolution of pure aluminum processed by equal channel angular pressing. Materials Characterization, 2010, 61, 1371-1378.	1.9	15
13	Textural evaluation of copper produced by equal channel angular pressing with routes A and B30. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6260-6269.	2.6	7
14	Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corrosion Science, 2009, 51, 3064-3067.	3.0	161
15	Fabrication of in situ aluminum–alumina composite with glass powder. Journal of Alloys and Compounds, 2009, 471, 378-382.	2.8	34
16	Texture simulation of aluminum rod during equal channel angular pressing. Journal of Materials Science, 2008, 43, 4561-4566.	1.7	4
17	Texture contribution in grain refinement effectiveness of different routes during ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 87-92.	2.6	14
18	Tensile properties of in-situ aluminium–alumina composites. Materials Letters, 2005, 59, 3414-3418.	1.3	27

#	Article	IF	CITATIONS
19	Effects of Grain Size and Texture on the Biocompatibility of Commercially Pure Titanium. Materials Science Forum, 0, 702-703, 822-825.	0.3	5
20	Simulation of Texture Development in Pure Aluminum Deformed by Equal Channel Angular Pressing. Ceramic Transactions, 0, , 713-720.	0.1	0