Graziano Zocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11859411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasticity, exudation and microbiome-association of the root system of Pellitory-of-the-wall plants grown in environments impaired in iron availability. Plant Physiology and Biochemistry, 2021, 168, 27-42.	5.8	3
2	Temporal Responses to Direct and Induced Iron Deficiency in Parietaria judaica. Agronomy, 2020, 10, 1037.	3.0	2
3	Modulation of photorespiration and nitrogen recycling in Fe-deficient cucumber leaves. Plant Physiology and Biochemistry, 2020, 154, 142-150.	5.8	4
4	Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H ⁺ â€pumping pyrophosphatase in pepper plants. Environmental Microbiology, 2019, 21, 3212-3228.	3.8	60
5	Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. Journal of Experimental Botany, 2016, 67, 1357-1368.	4.8	36
6	Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions. Frontiers in Plant Science, 2016, 7, 1994.	3.6	21
7	Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency. PLoS ONE, 2015, 10, e0129141.	2.5	26
8	Improved plant resistance to drought is promoted by the rootâ€associated microbiome as a water stressâ€dependent trait. Environmental Microbiology, 2015, 17, 316-331.	3.8	449
9	Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science, 2013, 18, 305-311.	8.8	102
10	Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. Journal of Plant Nutrition and Soil Science, 2013, 176, 734-742.	1.9	20
11	Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.). Plant Physiology and Biochemistry, 2013, 72, 145-153.	5.8	22
12	Fe deficiency differentially affects the vacuolar proton pumps in cucumber and soybean roots. Frontiers in Plant Science, 2013, 4, 326.	3.6	8
13	Cellular iron homeostasis and metabolism in plant. Frontiers in Plant Science, 2013, 4, 490.	3.6	34
14	Are drought-resistance promoting bacteria cross-compatible with different plant models?. Plant Signaling and Behavior, 2013, 8, e26741.	2.4	90
15	Immunolocalization of H+-ATPase and IRT1 enzymes in N2-fixing common bean nodules subjected to iron deficiency. Journal of Plant Physiology, 2012, 169, 242-248.	3.5	21
16	Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativusL.) plants. BMC Plant Biology, 2012, 12, 189.	3.6	91
17	Adaptive strategies of <i>Parietaria diffusa</i> (M.&K.) to calcareous habitat with limited iron availability*. Plant, Cell and Environment, 2012, 35, 1171-1184.	5.7	38
18	Application of the split root technique to study iron uptake in cucumber plants. Plant Physiology and Biochemistry, 2012, 57, 168-174.	5.8	10

GRAZIANO ZOCCHI

#	Article	IF	CITATIONS
19	A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS ONE, 2012, 7, e48479.	2.5	400
20	Metabolic changes of iron uptake in N2-fixing common bean nodules during iron deficiency. Plant Science, 2011, 181, 151-158.	3.6	26
21	Comparison of three pea cultivars (Pisum sativum) regarding their responses to direct and bicarbonate-induced iron deficiency. Scientia Horticulturae, 2011, 129, 548-553.	3.6	33
22	Responses of two lines of Medicago ciliaris to Fe deficiency under saline conditions. Plant Growth Regulation, 2011, 64, 221-230.	3.4	11
23	Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. Tree Physiology, 2011, 31, 102-113.	3.1	46
24	Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biology, 2010, 10, 120.	3.6	105
25	Proteomic characterization of iron deficiency responses in Cucumis sativusL. roots. BMC Plant Biology, 2010, 10, 268.	3.6	78
26	Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environmental and Experimental Botany, 2010, 68, 238-246.	4.2	65
27	Modulation of iron responsive gene expression and enzymatic activities in response to changes of the iron nutritional status in _Cucumis sativus_ L Nature Precedings, 2010, , .	0.1	4
28	Effect of Fe deficiency on mitochondrial alternative NAD(P)H dehydrogenases in cucumber roots. Journal of Plant Physiology, 2010, 167, 666-669.	3.5	26
29	Physiological and biochemical responses for two cultivars of Pisum sativum ("Merveille de Kelvedonâ€) Tj ETC	2q1,10.78	4314 rgBT /0
30	The fate and the role of mitochondria in Fe-deficient roots of Strategy I plants. Plant Signaling and Behavior, 2009, 4, 375-379.	2.4	25
31	Variability of metabolic responses and antioxidant defence in two lines of Medicago ciliaris to Fe deficiency. Plant and Soil, 2009, 320, 219-230.	3.7	17
32	Responses of two ecotypes of Medicago ciliaris to direct and bicarbonate-induced iron deficiency conditions. Acta Physiologiae Plantarum, 2009, 31, 667-673.	2.1	24
33	Iron availability affects the function of mitochondria in cucumber roots. New Phytologist, 2009, 182, 127-136.	7.3	85
34	Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of Plant Physiology, 2009, 166, 1181-1193.	3.5	67
35	Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. Plant and Soil, 2008, 312, 151-162.	3.7	39
36	Pear plantlets cultured â€~in vitro' under lime-induced chlorosis display a better adaptive strategy than quince plantlets. Plant Cell, Tissue and Organ Culture, 2008, 93, 191-200.	2.3	8

GRAZIANO ZOCCHI

#	Article	IF	CITATIONS
37	Iron deficiency differently affects metabolic responses in soybean roots. Journal of Experimental Botany, 2007, 58, 993-1000.	4.8	82
38	Effect of Vitamin K3 on plasma membrane-bound H+-ATPase and reductase activities in plants. Plant Science, 2006, 170, 936-941.	3.6	5
39	Adaptive responses to iron-deficiency in callus cultures of two cultivars ofVitisspp Journal of Plant Physiology, 2003, 160, 865-870.	3.5	7
40	Fe Deficiency Responses inParietaria diffusa: A Calcicole Plant. Journal of Plant Nutrition, 2003, 26, 2057-2068.	1.9	11
41	Effect of Iron Deficiency on RNA and Protein Synthesis in Cucumber Roots. Journal of Plant Nutrition, 2003, 26, 2177-2186.	1.9	8
42	Leaf Responses to Reduced Iron Availability in Two Tomato Genotypes: T3238FER (Iron Efficient) and T3238fer (Iron Inefficient). Journal of Plant Nutrition, 2003, 26, 2137-2148.	1.9	16
43	Localization of the plasma membrane H+-ATPase in Fe-deficient cucumber roots by immunodetection. Plant and Soil, 2002, 241, 11-17.	3.7	29
44	Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31 P-nuclear magnetic resonance in-vivo study. Planta, 2000, 210, 985-992.	3.2	68
45	Development of Feâ€deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+â€ATPase activity. Journal of Experimental Botany, 2000, 51, 695-701.	4.8	96
46	Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. Journal of Experimental Botany, 2000, 51, 1903-1909.	4.8	87
47	Development of Feâ€deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H + â€ATPase activity. Journal of Experimental Botany, 2000, 51, 695-701.	4.8	1
48	Calcium-dependent phosphorylation regulates the plasma-membrane H + -ATPase activity of maize (Zea) Tj ET	Qq0	3T /Overlock 1 41
49	Physiological responses of grapevine callus cultures to iron deficiency. Journal of Plant Nutrition, 1997, 20, 1539-1549.	1.9	3
50	The role of calcium in the cold shock responses. Plant Science, 1996, 121, 161-166.	3.6	15
51	Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots. Physiologia Plantarum, 1994, 90, 779-785.	5.2	95
52	Fe Uptake Mechanism in Fe-Efficient Cucumber Roots. Plant Physiology, 1990, 92, 908-911.	4.8	62
53	Comparison of the Effect of Indoleacetic Acid and Fusicoccin on the Breakdown of Phosphatidylinositol in Maize Coleoptiles. Plant Physiology, 1990, 94, 1009-1011.	4.8	8
54	Separation of membrane vesicles from maize roots having different calcium transport activities. Plant Science, 1988, 54, 103-107.	3.6	20

GRAZIANO ZOCCHI

#	Article	IF	CITATIONS
55	Phosphorylation-dephosphorylation of membrane proteins controls the microsomal H+-ATPase activity of corn roots. Plant Science, 1985, 40, 153-159.	3.6	49
56	Changes in form of elongation factor 1 during germination of wheat seeds. FEBS Journal, 1984, 139, 1-4.	0.2	12
57	Calcium transport and ATPase activity in a microsomal vesicle fraction from corn roots Plant, Cell and Environment, 1983, 6, 203-209.	5.7	42
58	Inhibition of proton pumping in corn roots is associated with increased phosphorylation of membrane proteins. Plant Science Letters, 1983, 31, 215-221.	1.8	37
59	Calcium transport and ATPase activity in a microsomal vesicle fraction from corn roots. Plant, Cell and Environment, 1983, 6, 203-209.	5.7	29
60	Calcium Influx into Corn Roots as a Result of Cold Shock. Plant Physiology, 1982, 70, 318-319.	4.8	57
61	Different forms of EF1 and viability in wheat embryos. Phytochemistry, 1976, 15, 1607-1610.	2.9	17