Sujay Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11859/publications.pdf

Version: 2024-02-01

57	1,241	18	32
papers	citations	h-index	g-index
57	57	57	1312
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean- <i>Rhizobium etli</i> Nitrogen Fixation Symbiosis. Plant Physiology, 2015, 168, 273-291.	4.8	134
2	Regulation of Copper Homeostasis and Biotic Interactions by MicroRNA 398b in Common Bean. PLoS ONE, 2014, 9, e84416.	2.5	109
3	Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell, Tissue and Organ Culture, 2011, 105, 233-242.	2.3	75
4	Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells, 2020, 9, 1698.	4.1	71
5	Isolation, Characterization, and Structure Analysis of a Non-TIR-NBS-LRR Encoding Candidate Gene from MYMIV-Resistant Vigna mungo. Molecular Biotechnology, 2012, 52, 217-233.	2.4	66
6	The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Research, 2022, 308, 198631.	2.2	47
7	High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Science, 2017, 257, 96-105.	3.6	46
8	An improved method of DNA isolation suitable for PCR-based detection of begomoviruses from jute and other mucilaginous plants. Journal of Virological Methods, 2009, 159, 34-39.	2.1	44
9	MicroRNAs and Child Neuropsychiatric Disorders: A Brief Review. Neurochemical Research, 2020, 45, 232-240.	3.3	36
10	Distribution, epidemiology and molecular variability of the begomovirus complexes associated with yellow vein mosaic disease of mesta in India. Virus Research, 2009, 141, 237-246.	2.2	35
11	Human microRNAs in host–parasite interaction: a review. 3 Biotech, 2020, 10, 510.	2.2	35
12	Identification and expression profiling of <i>Vigna mungo</i> microRNAs from leaf small RNA transcriptome by deep sequencing. Journal of Integrative Plant Biology, 2014, 56, 15-23.	8.5	32
13	Transcript Dynamics at Early Stages of Molecular Interactions of MYMIV with Resistant and Susceptible Genotypes of the Leguminous Host, Vigna mungo. PLoS ONE, 2015, 10, e0124687.	2.5	32
14	Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Archives of Biochemistry and Biophysics, 2021, 699, 108763.	3.0	31
15	Sequence variability and phylogenetic relationship of betasatellite isolates associated with yellow vein mosaic disease of mesta in India. Virus Genes, 2008, 37, 414-424.	1.6	29
16	The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. Molecules, 2022, 27, 211.	3.8	26
17	Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech, 2020, 10, 25.	2.2	25
18	Complete nucleotide sequence of a monopartite begomovirus associated with yellow vein mosaic disease of mesta from north India. Archives of Virology, 2008, 153, 1791-1796.	2.1	24

#	Article	IF	CITATIONS
19	Phytochemicals mediated modulation of <scp>microRNAs</scp> and long nonâ€coding <scp>RNAs</scp> in cancer prevention and therapy. Phytotherapy Research, 2022, 36, 705-729.	5.8	23
20	Identification of microRNAs and Their Expression in Leaf Tissues of Guava (Psidium guajava L.) under Salinity Stress. Agronomy, 2020, 10, 1920.	3.0	20
21	Occurrence of Begomovirus Associated with Yellow Vein Mosaic Disease of Kenaf (Hibiscus) Tj ETQq1 1 0.78431	4 rgBT /0\ £4	verlock 10 Tf
22	Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru. Genomics Data, 2016, 9, 63-66.	1.3	17
23	Current insight into the functions of microRNAs in common human hair loss disorders: a mini review. Human Cell, 2021, 34, 1040-1050.	2.7	16
24	Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie, 2021, 187, 83-93.	2.6	16
25	Identification of microRNAs from Medicinal Plant Murraya koenigii by High-Throughput Sequencing and Their Functional Implications in Secondary Metabolite Biosynthesis. Plants, 2022, 11, 46.	3.5	16
26	Occurrence of a DNA β-containing begomovirus associated with leaf curl disease of kenaf (Hibiscus) Tj ETQq0 0	0 rgBT /0ນ	verlock 10 Tf
27	First report of <i>Tomato leaf curl Joydebpur virus</i> and associated betasatellite in kenaf (<i>Hibiscus cannabinus</i>) plants showing leaf curl symptoms from southern India. Plant Pathology, 2009, 58, 403-403.	2.4	13
28	Detection of Corchorus golden mosaic virus Associated with Yellow Mosaic Disease of Jute (Corchorus capsularis). Indian Journal of Virology: an Official Organ of Indian Virological Society, 2012, 23, 70-74.	0.7	13
29	Isolation and Characterization of Cellulase Producing Bacterial Strains from an Amazonian Geothermal Spring in Peru. British Microbiology Research Journal, 2016, 15, 1-8.	0.2	13
30	Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Digestive Diseases and Sciences, 2023, 68, 38-53.	2.3	12
31	Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest. Journal of Biotechnology, 2017, 251, 53-58.	3.8	11
32	Identification and characterization of microRNAs and their targets in high-altitude stress-adaptive plant maca (Lepidium meyenii Walp). 3 Biotech, 2017, 7, 103.	2.2	11
33	Genome-wide computational prediction and experimental validation of quinoa (<i>Chenopodium) Tj ETQq$1\ 1\ 0.7$</i>	'843]4 rg	BT ₁ Overlock
34	High-quality draft genome sequence of a biofilm forming lignocellulolytic Aspergillus niger strain ATCC 10864. Standards in Genomic Sciences, 2017, 12, 37.	1.5	10
35	First global transcriptome analysis of brown algae Macrocystis integrifolia (Phaeophyceae) under marine intertidal conditions. 3 Biotech, 2018, 8, 185.	2.2	10
36	Characterization of miRNAs from sardine (Sardina pilchardus Walbaum, 1792) and their tissue-specific expression analysis in brain and liver. 3 Biotech, 2020, 10, 318.	2.2	8

#	Article	IF	Citations
37	A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes, 2022, 13, 191.	2.4	8
38	Engineered titania nanomaterials in advanced clinical applications. Beilstein Journal of Nanotechnology, 2022, 13, 201-218.	2.8	8
39	Developmentally regulated temporal expression and differential acid invertase activity in differentiating cotyledonary explants of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell, Tissue and Organ Culture, 2011, 107, 417-425.	2.3	7
40	A de novo transcriptomic approach to study the influence of marine water depth in Macrocystis pyrifera alginate production. Aquatic Botany, 2020, 163, 103211.	1.6	7
41	Metagenomic Analysis of Microbial Communities in the Soil-mousse Surrounding of an Amazonian Geothermal Spring in Peru. British Biotechnology Journal, 2016, 15, 1-11.	0.4	7
42	Genome Wide Computational Identification of Tuna (Thunnus orientalis) MicroRNAs and Their Targets. Ocean Science Journal, 2018, 53, 727-734.	1.3	6
43	In silico Characterization of microRNAs and Their Target Transcripts from Cranberry (Vaccinium) Tj ETQq1	l 0.784314 rgBT 0.5	/Qverlock 1
44	Characterization of microRNAs from neem (Azadirachta indica) and their tissue-specific expression study in leaves and stem. 3 Biotech, 2021, 11, 277.	2,2	6
45	The regulatory activities of microRNAs in non-vascular plants: a mini review. Planta, 2021, 254, 57.	3.2	6
46	Analysis of coat protein gene sequences of begomoviruses associated with different weed species in India. Phytoparasitica, 2012, 40, 95-100.	1,2	5
47	Evolutionary Pattern of Interferon Alpha Genes in Bovidae and Genetic Diversity of IFNAA in the Bovine Genome. Frontiers in Immunology, 2020, 11, 580412.	4.8	5
48	Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review. Recent Advances in Inflammation & Allergy Drug Discovery, 2022, 16, 5-15.	0.8	5
49	Molecular evidence for existence of a New World begomovirus associated with yellow mosaic disease of Corchorus capsularis in India. Australasian Plant Disease Notes, 2008, 3, 59-62.	0.7	4
50	Genome-wide Characterization of MicroRNAs from Mungbean (Vigna radiata L.). Biotechnology Journal International, 2017, 17, 1-9.	0.2	3
51	Impact of smokingâ€induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. Journal of Biochemical and Molecular Toxicology, 0, , .	3.0	3
52	Cell Cultures and Hairy Roots as Platform for Production of High-Value Metabolites: Current Approaches, Limitations, and Future Prospects. , 2019, , 23-57.		2
53	Insight into the genome data of commercially important giant kelp Macrocystis pyrifera. Data in Brief, 2022, 42, 108068.	1.0	2
54	The elusive roles of chloroplast microRNAs: an unexplored facet of the plant transcriptome. Plant Molecular Biology, 2022, 109, 667-671.	3.9	2

SUJAY PAUL

#	Article	IF	CITATIONS
55	A peep into the transcriptome studies of the industrially important brown algae with special focus on Macrocystis genus. Revista Peruana De Biologia, 2020, 27, 049-053.	0.3	1
56	Extraction of Small RNA and qPCR Validation of miRNAs in Vigna mungo. Bio-protocol, 2015, 5 , .	0.4	1
57	Mungbean Yellow Mosaic India Virus (MYMIV)-infection, Small RNA Library Construction and Deep Sequencing for MicroRNA Identification in Vigna mungo. Bio-protocol, 2016, 6, .	0.4	0