Shyam Kamal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185870/publications.pdf Version: 2024-02-01

SUVANA KANAAI

#	Article	IF	CITATIONS
1	Free-will Arbitrary Time Terminal Sliding Mode Control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, , 1-1.	3.0	19
2	An improved output feedback controller design for linear discreteâ€ŧime systems using a matrix decomposition method. Asian Journal of Control, 2023, 25, 769-782.	3.0	4
3	Free-Will Arbitrary Time Consensus for Multiagent Systems. IEEE Transactions on Cybernetics, 2022, 52, 4636-4646.	9.5	31
4	Discrete-Time Implementation of Super-Twisting Control With Semi-Implicit Euler Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 99-103.	3.0	4
5	Artificial Delayed Output Twisting Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1079-1083.	3.0	0
6	<i>L</i> ₂ -based static output feedback controller design for a class of polytopic systems with actuator saturation. International Journal of Control, 2022, 95, 2151-2163.	1.9	10
7	A [K, KL] Sector-Based Hands-Off Control With Quantization Parameter Mismatch. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1407-1411.	3.0	2
8	Discrete-Time Super-Twisting Fractional-Order Observer With Implicit Euler Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2787-2791.	3.0	3
9	Free-Will Arbitrary Time Terminal Sliding Mode Control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3189-3193.	3.0	7
10	Interval observer design for nonlinear systems using simplified contraction theory. IET Control Theory and Applications, 2022, 16, 935-944.	2.1	1
11	Discrete-Time Multivariable Super-Twisting Algorithm With Semi-Implicit Euler Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4443-4447.	3.0	1
12	Discrete-Time Super-Twisting Observer With Implicit Euler Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1288-1292.	3.0	5
13	Discrete-Time Super-Twisting Fractional-Order Differentiator With Implicit Euler Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1238-1242.	3.0	11
14	Sliding mode control of uncertain fractionalâ€order systems: A reaching phase free approach. Asian Journal of Control, 2021, 23, 199-208.	3.0	13
15	New LMI conditions for <i>H</i> _{â^ž} / <i>H</i> ₂ output feedback control of linear discrete-time systems. International Journal of Control, 2021, 94, 1716-1722.	1.9	9
16	Adaptive gains to superâ€ŧwisting technique for sliding mode design. Asian Journal of Control, 2021, 23, 362-373.	3.0	17
17	Implicit Discrete-Time Adaptive First-Order Sliding Mode Control With Predefined Convergence Time. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3562-3566.	3.0	6
18	Implicit Discrete-Time Terminal Sliding Mode Control for Second-Order Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2508-2512.	3.0	6

SHYAM KAMAL

#	Article	IF	CITATIONS
19	Quantizedâ€feedback handsâ€off control for nonlinear systems. IET Control Theory and Applications, 2021, 15, 1364-1374.	2.1	3
20	Implicitâ€Euler based digital implementation for constrained stabilization of secondâ€order systems. International Journal of Robust and Nonlinear Control, 2021, 31, 5086-5100.	3.7	2
21	Load voltage-based MPPT technique for standalone PV systems using adaptive step. International Journal of Electrical Power and Energy Systems, 2021, 128, 106732.	5.5	26
22	Discrete-Time Adaptive Super-Twisting Observer With Predefined Arbitrary Convergence Time. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2057-2061.	3.0	6
23	Arbitrary Time Attitude Stabilization and Tracking of Rigid Body on SO(3). , 2021, , .		4
24	Delayed output feedback based leader–follower and leaderless consensus control of uncertain multiagent systems. IET Control Theory and Applications, 2021, 15, 1956-1970.	2.1	4
25	Consensus problems in multiagent systems: A vector based contraction approach. IET Control Theory and Applications, 2021, 15, 2195-2209.	2.1	6
26	A current sensor based adaptive stepâ€size MPPT with SEPIC converter for photovoltaic systems. IET Renewable Power Generation, 2021, 15, 1085-1099.	3.1	9
27	Neural Network Control based Stabilization of Nonlinear Systems in Arbitrary Time. , 2021, , .		5
28	Sliding mode approach for formation control of perturbed second-order autonomous unmanned systems. IFAC-PapersOnLine, 2021, 54, 168-173.	0.9	4
29	Adaptive Super-Twisting Guidance Law with Extended State Observer. , 2021, , .		7
30	Higher Order Sliding Mode Control-Based Finite-Time Constrained Stabilization. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 295-299.	3.0	17
31	Global Stabilization of Uncertain SISO Dynamical Systems Using a Multiple Delayed Partial State Feedback Sliding Mode Control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1259-1263.	3.0	12
32	Implicit-Euler Implementation of Super-Twisting Observer and Twisting Controller for Second-Order Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2607-2611.	3.0	33
33	Design of controllers with arbitrary convergence time. Automatica, 2020, 112, 108710.	5.0	133
34	Authors' Reply To: (CI 20-0229) Comments on Design of controllers with arbitrary convergence time [Automatica 108710]. Automatica, 2020, 122, 109194.	5.0	7
35	New Decentralised Event-Triggered Consensus Strategy for Single and Double Integrator Multi-Agent Systems. IEEE Access, 2020, 8, 157059-157067.	4.2	3
36	Arbitrary Time Stabilization of a Coupled Tank System: A Contraction based Approach. , 2020, , .		10

SHYAM KAMAL

#	Article	IF	CITATIONS
37	Controller and Observer design for Chaotic Systems: A Vector Based Contraction Approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3282-3286.	3.0	2
38	Nonsmooth PI Controller for Uncertain Systems. IEEE Access, 2020, 8, 124792-124801.	4.2	2
39	A Robust [K,KL] Sector for Nonlinear System. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2547-2551.	3.0	9
40	Discreteâ€time sector based handsâ€off control for nonlinear system. International Journal of Robust and Nonlinear Control, 2020, 30, 2443-2460.	3.7	11
41	Delayed output feedback sliding mode control for uncertain nonâ€linear systems. IET Control Theory and Applications, 2020, 14, 2106-2115.	2.1	16
42	Quasi‣PV PI control of TRMS subject to actuator saturation. IET Control Theory and Applications, 2020, 14, 3157-3167.	2.1	1
43	A Robustness Consideration in Continuous Time \$mathcal{[K,KL]}\$ Sector for Nonlinear System. IEEE Access, 2019, 7, 30628-30636.	4.2	10
44	Bio-Inspired Learning and Adaptation for Optimization and Control of Complex Systems. Complexity, 2019, 1-3.	1.6	5
45	A New Hill Climbing Maximum Power Tracking Control for Wind Turbines With Inertial Effect Compensation. IEEE Transactions on Industrial Electronics, 2019, 66, 8545-8556.	7.9	29
46	Discrete-Time Implementation of Continuous Terminal Algorithm With Implicit-Euler Method. IEEE Access, 2019, 7, 175940-175946.	4.2	3
47	Computation of Impulse-Response Gramian for Interval Systems. IETE Journal of Research, 2019, , 1-15.	2.6	2
48	A <mml:math <br="" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e123" altimg="si235.gif"><mml:mi mathvariant="script">[K,KL]</mml:mi></mml:math> sector based control design for nonlinear system. ISA Transactions, 2019, 89, 77-83.	5.7	11
49	Non-Differentiable Function Tracking. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1835-1839.	3.0	6
50	Robust finite time cooperative control of second order agents:A Multi-input Multi-output higher order super-twisting based approach. ISA Transactions, 2019, 86, 1-8.	5.7	13
51	Continuous higher order sliding mode control for a class of uncertain MIMO nonlinear systems: An ISS approach. European Journal of Control, 2018, 41, 1-7.	2.6	7
52	Adaptive gains of dual level to superâ€ŧwisting algorithm for sliding mode design. IET Control Theory and Applications, 2018, 12, 2347-2356.	2.1	19
53	Multilayer Hybrid Deep-Learning Method for Waste Classification and Recycling. Computational Intelligence and Neuroscience, 2018, 2018, 1-9.	1.7	145
54	Continuous terminal sliding-mode controller. Automatica, 2016, 69, 308-314.	5.0	164

SHYAM KAMAL

#	ARTICLE	IF	CITATIONS
55	Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches. IEEE Transactions on Industrial Electronics, 2016, 63, 3677-3685.	7.9	394
56	A New Algorithm for Continuous Sliding Mode Control With Implementation to Industrial Emulator Setup. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2194-2204.	5.8	85
57	Fault tolerant control allocation via continuous integral sliding-modes: A HOSM-Observer approach. Automatica, 2015, 51, 318-325.	5.0	84
58	Higher order sliding mode-based robust stabilisation of fluid-flow model of TCP/AQM scheme. International Journal of Automation and Control, 2014, 8, 17.	0.5	1