Ulrich A Stock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11858005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The results of cardiac surgery during the COVID-19 pandemic compared with previous years: a propensity weighted study of outcomes at six months. Journal of the Royal Society of Medicine, 2022, 115, 341-347.	2.0	4
2	Pros and Cons of Different Types of Mechanical Circulatory Support Device in Case of Postinfarction Ventricular Septal Defect. ASAIO Journal, 2021, 67, e110-e113.	1.6	11
3	Cardiac surgery during the COVID-19 pandemic: from <i>vita minima</i> to recovery. British Journal of Surgery, 2020, 107, e481-e483.	0.3	3
4	Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells, 2020, 9, 778.	4.1	39
5	Marker-Independent In Situ Quantitative Assessment of Residual Cryoprotectants in Cardiac Tissues. Analytical Chemistry, 2019, 91, 2266-2272.	6.5	12
6	Impact of T-cell-mediated immune response on xenogeneic heart valve transplantation: short-term success and mid-term failure. European Journal of Cardio-thoracic Surgery, 2018, 53, 784-792.	1.4	8
7	Effects on human heart valve immunogenicity <i>in vitro</i> by high concentration cryoprotectant treatment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1046-e1055.	2.7	8
8	The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Scientific Reports, 2017, 7, 17027.	3.3	16
9	Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery. Therapeutics and Clinical Risk Management, 2016, Volume 12, 1841-1847.	2.0	1
10	Influence of hypothermia and subsequent rewarming upon leukocyte-endothelial interactions and expression of Junctional-Adhesion-Molecules A and B. Scientific Reports, 2016, 6, 21996.	3.3	5
11	The role of extracellular and intracellular proteolytic systems in aneurysms of the ascending aorta. Histology and Histopathology, 2016, 31, 523-34.	0.7	1
12	Percutaneous SAPIEN S3 Transcatheter Valve Implantation for Post–Left Ventricular Assist Device Aortic Regurgitation. Annals of Thoracic Surgery, 2015, 100, e67-e69.	1.3	10
13	Xeno-immunogenicity of ice-free cryopreserved porcine leaflets. Journal of Surgical Research, 2015, 193, 933-941.	1.6	11
14	Methylene blue modulates adhesion molecule expression on microvascular endothelial cells. Inflammation Research, 2014, 63, 649-656.	4.0	1
15	Absence of Immune Responses with Xenogeneic Collagen and Elastin. Tissue Engineering - Part A, 2013, 19, 1592-1600.	3.1	28
16	Searching for the optimal heart valve. Biotechnology Journal, 2013, 8, 286-287.	3.5	5
17	Methylene Blue Modulates Transendothelial Migration of Peripheral Blood Cells. PLoS ONE, 2013, 8, e82214.	2.5	10
18	The Myth of Cryopreservation of Heart Valves. FASEB Journal, 2013, 27, 16.6.	0.5	0

ULRICH A STOCK

#	Article	IF	CITATIONS
19	Preclinical Evaluation of Ice-Free Cryopreserved Arteries: Structural Integrity and Hemocompatibility. Cells Tissues Organs, 2012, 196, 262-270.	2.3	16
20	Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility. International Journal of Biomaterials, 2012, 2012, 1-14.	2.4	16
21	Development of a Simplified Ice-Free Cryopreservation Method for Heart Valves Employing VS83, an 83% Cryoprotectant Formulation. Biopreservation and Biobanking, 2012, 10, 479-484.	1.0	8
22	lce-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results. Cell and Tissue Banking, 2012, 13, 663-671.	1.1	36
23	Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Biomaterials, 2012, 33, 5259-5266.	11.4	66
24	Raman spectroscopy for the nonâ€contact and nonâ€destructive monitoring of collagen damage within tissues. Journal of Biophotonics, 2012, 5, 47-56.	2.3	68
25	Gelatin and Decorin are Suitable Candidates for Application in Tissue-Engineered Matrices - an Immunological In Vitro Study. , 2012, , .		0
26	Simplified Pulse Reactor for Real-Time Long-Term In Vitro Testing of Biological Heart Valves. Annals of Biomedical Engineering, 2010, 38, 1919-1927.	2.5	4
27	Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials, 2010, 31, 2549-2554.	11.4	189
28	Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials, 2010, 31, 3793-3803.	11.4	86
29	The performance of ice-free cryopreserved heart valve allografts in an orthotopic pulmonary sheep model. Biomaterials, 2010, 31, 5306-5311.	11.4	37
30	Percutaneous pulmonary valve replacement: autologous tissue-engineered valved stents. Cardiovascular Research, 2010, 88, 453-461.	3.8	33
31	Cardiomyopathy is associated with structural remodelling of heart valve extracellular matrix. European Heart Journal, 2009, 30, 2254-2265.	2.2	48
32	<i>In vivo</i> tissue engineering of heart valves: evolution of a novel concept. Regenerative Medicine, 2009, 4, 613-619.	1.7	32
33	Phenotypical Plasticity of Vascular Smooth Muscle Cells—Effect of <i>In Vitro</i> and <i>In Vivo</i> Shear Stress for Tissue Engineering of Blood Vessels. Tissue Engineering, 2007, 13, 2505-2514.	4.6	33
34	Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1505-1512.	4.0	80
35	Optimized Preservation of Extracellular Matrix in Cardiac Tissues: Implications for Long-Term Graft Durability. Annals of Thoracic Surgery, 2007, 83, 1641-1650.	1.3	71
36	Impact of Cryopreservation on Extracellular Matrix Structures of Heart Valve Leaflets. Annals of Thoracic Surgery, 2006, 81, 918-926.	1.3	98

ULRICH A STOCK

#	Article	IF	CITATIONS
37	Performance of decellularized xenogeneic tissue in heart valve replacement. Biomaterials, 2006, 27, 1-2.	11.4	59
38	Two-photon microscopes and in vivo multiphoton tomographs — Powerful diagnostic tools for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 2006, 58, 878-896.	13.7	196
39	Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy. Journal of Biomedical Optics, 2005, 10, 024017.	2.6	51
40	Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovascular Research, 2004, 63, 719-730.	3.8	101
41	Combination of alpha-stat strategy and hemodilution exacerbates neurologic injury in a survival piglet model with deep hypothermic circulatory arrest. Annals of Thoracic Surgery, 2002, 73, 180-189.	1.3	71
42	Cardiovascular Physiology During Fetal Development and Implications for Tissue Engineering. Tissue Engineering, 2001, 7, 1-7.	4.6	56
43	Dynamics of extracellular matrix production and turnover in tissue engineered cardiovascular structures. Journal of Cellular Biochemistry, 2001, 81, 220-228.	2.6	54
44	Tissue Engineering: Current State and Prospects. Annual Review of Medicine, 2001, 52, 443-451.	12.2	420
45	Prediction of safe duration of hypothermic circulatory arrest by near-infrared spectroscopy. Journal of Thoracic and Cardiovascular Surgery, 2001, 122, 339-350.	0.8	77
46	Utility and Limitations of Near-Infrared Spectroscopy during Cardiopulmonary Bypass in a Piglet Model. Pediatric Research, 2001, 49, 770-776.	2.3	69
47	Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. Journal of Thoracic and Cardiovascular Surgery, 2000, 120, 1158-1167.	0.8	98
48	Tissue-engineered valved conduits in the pulmonary circulation. Journal of Thoracic and Cardiovascular Surgery, 2000, 119, 732-740.	0.8	239
49	Valves in Development for Autogenous Tissue Valve Replacement. Pediatric Cardiac Surgery Annual, 1999, 2, 51-64.	1.2	11