Stephen J Klaine

List of Publications by Citations

Source: https://exaly.com/author-pdf/11855124/stephen-j-klaine-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 7,646 36 71 g-index

71 8,195 4.7 5.7 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
70	Nanomaterials in the environment: behavior, fate, bioavailability, and effects. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1825-51	3.8	2098
69	Ecological risk assessment of atrazine in North American surface waters. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 31-76	3.8	788
68	Potential scenarios for nanomaterial release and subsequent alteration in the environment. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 50-9	3.8	457
67	Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 32-49	3.8	355
66	Translocation of C60 and its derivatives across a lipid bilayer. <i>Nano Letters</i> , 2007 , 7, 614-9	11.5	338
65	Responses of Hyalella azteca to acute and chronic microplastic exposures. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2564-72	3.8	302
64	In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. <i>Environmental Science & Environmental Science</i>	10.3	284
63	Paradigms to assess the environmental impact of manufactured nanomaterials. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 3-14	3.8	263
62	Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 15-31	3.8	240
61	Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. <i>Science of the Total Environment</i> , 2010 , 408, 2268-72	10.2	177
60	Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure. <i>Aquatic Toxicology</i> , 2008 , 88, 207-13	5.1	155
59	Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1055-67	3.8	119
58	Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. <i>Environmental Science & Environmental Science & Environment</i>	25 ⁻³³ 3	117
57	Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs. <i>Integrated Environmental Assessment and Management</i> , 2017 , 13, 505-509	2.5	110
56	The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2511-8	3.8	98
55	Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2356-64	3.8	93
54	Influence of multiwalled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper. <i>Environmental Science & Environmental Science & En</i>	10.3	76

53	Response of Daphnia magna to pulsed exposures of chlorpyrifos. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 423-431	3.8	73
52	Implications of pulsed chemical exposures for aquatic life criteria and wastewater permit limits. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 5132-8	10.3	65
51	Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna). <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 63-70	3.8	59
50	Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 194-201	3.8	58
49	Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior. <i>Aquatic Toxicology</i> , 2014 , 148, 130-8	5.1	57
48	Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 122-6	3.8	57
47	Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. <i>Nanotoxicology</i> , 2014 , 8 Suppl 1, 2-10	5.3	54
46	Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): implications for the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 1567-74	3.8	53
45	Nitrogen and Phosphorus Remediation by Three Floating Aquatic Macrophytes in Greenhouse-Based Laboratory-Scale Subsurface Constructed Wetlands. <i>Water, Air, and Soil Pollution</i> , 2009 , 197, 223-232	2.6	52
44	The effects of continuous and pulsed exposures of suspended clay on the survival, growth, and reproduction of Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 168-75	3.8	52
43	Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1663-70	3.8	48
42	Nutrient attenuation by a riparian wetland during natural and artificial runoff events. <i>Journal of Environmental Quality</i> , 2001 , 30, 1720-31	3.4	47
41	Influence of multiple water-quality characteristics on copper toxicity to fathead minnows (Pimephales promelas). <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 2900-5	3.8	41
40	Partitioning behavior and the mobility of chlordane in groundwater. <i>Environmental Science & Environmental Science & Technology</i> , 1992 , 26, 2234-2239	10.3	41
39	Tracking and quantification of single-walled carbon nanotubes in fish using near infrared fluorescence. <i>Environmental Science & Environmental Science</i>	10.3	40
38	Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1677-94	3.8	40
37	Mechanisms of nutrient attenuation in a subsurface flow riparian wetland. <i>Journal of Environmental Quality</i> , 2001 , 30, 1732-7	3.4	38
36	Influence of Nitrite and Chloride Concentrations on Survival and Hematological Profiles of Striped Bass. <i>Transactions of the American Fisheries Society</i> , 1991 , 120, 247-254	1.7	37

35	Influence of organism age on metal toxicity to Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1198-204	3.8	36
34	Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. <i>Applied Physics Letters</i> , 2006 , 89, 143118	3.4	35
33	Effect of pulse frequency and interval on the toxicity of chlorpyrifos to Daphnia magna. <i>Chemosphere</i> , 2001 , 45, 497-506	8.4	35
32	Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes. <i>Environmental Science & Environmental Sci</i>	10.3	33
31	Nutrient Management of Nursery Runoff Water using Constructed Wetland Systems. <i>HortTechnology</i> , 2006 , 16, 610-614	1.3	33
30	The developmental effects of a municipal wastewater effluent on the northern leopard frog, Rana pipiens. <i>Aquatic Toxicology</i> , 2009 , 94, 145-52	5.1	32
29	Phosphorus retention in lab and field-scale subsurface-flow wetlands treating plant nursery runoff. <i>Ecological Engineering</i> , 2011 , 37, 1968-1976	3.9	31
28	Influence of carbon nanotubes on the bioavailability of fluoranthene. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 658-66	3.8	30
27	Reprint of: Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior. <i>Aquatic Toxicology</i> , 2014 , 151, 88-96	5.1	28
26	Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 860-72	3.8	27
25	Toxicity of two pulsed metal exposures to Daphnia magna: relative effects of pulsed duration-concentration and influence of interpulse period. <i>Archives of Environmental Contamination and Toxicology</i> , 2007 , 53, 579-89	3.2	27
24	Effects of an antidepressant mixture on the brain serotonin and predation behavior of hybrid striped bass. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 938-45	3.8	27
23	Influence of dissolved organic matter source on silver toxicity to Pimephales promelas. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2746-51	3.8	26
22	Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1661-1666	3.8	23
21	Characterizing the toxicity of pulsed selenium exposure to Daphnia magna. <i>Chemosphere</i> , 2008 , 71, 42	9-884	21
20	Biochemical and behavioral effects of diazinon exposure in hybrid striped bass. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 105-12	3.8	20
19	An integrated model describing the toxic responses of Daphnia magna to pulsed exposures of three metals. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 132-8	3.8	19
18	Further considerations of the skeletal system as a biomarker of episodic chlorpyrifos exposure. <i>Aquatic Toxicology</i> , 2001 , 52, 285-96	5.1	19

LIST OF PUBLICATIONS

17	Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure. <i>Nanotoxicology</i> , 2011 , 5, 730-42	5.3	16
16	Nutrient Recovery by Seven Aquatic Garden Plants in a Laboratory-scale Subsurface-constructed Wetland. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2007 , 42, 1674-1680	2.4	15
15	Toxicity of aqueous C70-gallic acid suspension in Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 215-20	3.8	14
14	Whole-body sodium concentration in larval fathead minnows (Pimephales promelas) during and following copper exposure. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1635-9	3.8	14
13	Localization of denitrification activity in macropores of a riparian wetland. <i>Soil Biology and Biochemistry</i> , 2004 , 36, 563-569	7.5	14
12	Impacts of land disturbance on aquatic ecosystem health: quantifying the cascade of events. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 431-42	2.5	13
11	Remediation of Nitrogen and Phosphorus from Nursery Runoff during the Spring via Free Water Surface Constructed Wetlands. <i>Journal of Environmental Horticulture</i> , 2010 , 28, 209-217	0.7	13
10	Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 9288-9296	10.3	12
9	Differential Nitrogen and Phosphorus Recovery by Five Aquatic Garden Species in Laboratory-scale Subsurface-constructed Wetlands. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2008 , 43, 868-874	2.4	11
8	Acute and chronic response of Daphnia magna exposed to TiO2 nanoparticles in agitation system. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 93, 456-60	2.7	9
7	Testing the individual effective dose hypothesis. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 791	-3 .8	6
6	. Environmental Toxicology and Chemistry, 2000 , 19, 423	3.8	5
5	The effects of bupropion on hybrid striped bass brain chemistry and predatory behavior. Environmental Toxicology and Chemistry, 2016 , 35, 2058-65	3.8	1
4	Treatment with coated layer double hydroxide clays decreases the toxicity of copper-contaminated water. <i>Archives of Environmental Contamination and Toxicology</i> , 2014 , 66, 549-56	3.2	1
3	Demonstration of a landscape-scale approach for predicting acute copper toxicity to larval fathead minnows (Pimephales promelas) in surface waters. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 237	2.5	1
2	Correlating Quantitative Measurements of Radical Production by Photocatalytic TiO with Daphnia magna Toxicity. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1322-1334	3.8	1
1	Xenobiotic Impacts on the Skeletal System of Teleosts. <i>Reviews of Environmental Contamination and Toxicology</i> , 2001 , 1-20	3.5	1