Liwen Ji

List of Publications by Citations

Source: https://exaly.com/author-pdf/11854431/liwen-ji-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46
papers

8,617
citations

48
g-index

48
ext. papers

9,047
ext. citations

10.1
avg, IF

L-index

#	Paper	IF	Citations
46	Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 2682	35.4	1848
45	Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18522-5	16.4	1303
44	Porous carbon nanofiberBulfur composite electrodes for lithium/sulfur cells. <i>Energy and Environmental Science</i> , 2011 , 4, 5053	35.4	527
43	Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. <i>Advanced Materials</i> , 2014 , 26, 2901-8	24	396
42	Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13670-5	3.6	282
41	Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. <i>Nature Communications</i> , 2014 , 5, 3015	17.4	267
40	Graphene-Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016 , 6, 1502159	21.8	233
39	Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7170-7	3.6	229
38	Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. <i>Energy and Environmental Science</i> , 2011 , 4, 3611	35.4	204
37	Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. <i>Carbon</i> , 2009 , 47, 3346-3354	10.4	204
36	Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. <i>Nanotechnology</i> , 2009 , 20, 155705	3.4	192
35	Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. <i>ACS Applied Materials & District Research Applied Materials & District Research R</i>	9.5	181
34	Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. <i>Carbon</i> , 2009 , 47, 3219-3226	10.4	177
33	Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries. <i>Polymer Reviews</i> , 2011 , 51, 239-264	14	146
32	Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. <i>ACS Applied Materials & District Applied & Distr</i>	9.5	141
31	Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2010 , 195, 2050-2056	8.9	140
30	Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. <i>Nano Energy</i> , 2012 , 1, 164-171	17.1	134

(2009-2009)

Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. <i>Electrochemistry Communications</i> , 2009 , 11, 1146-1149	5.1	123
Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. <i>Journal of Power Sources</i> , 2011 , 196, 436-441	8.9	121
Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. <i>Energy and Environmental Science</i> , 2010 , 3, 124-129	35.4	120
Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. <i>ACS Applied Materials & Discrete Section</i> 2012, 4, 1273-80	9.5	112
Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. <i>Journal of Materials Chemistry</i> , 2009 , 19, 559	3	105
Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 795-798	5.1	102
Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 684-6	87 ¹	101
Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 7692-7699	8.9	101
Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4992		95
Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2010 , 195, 5025-5031	8.9	84
Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 24895-901	9.5	80
Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. <i>Nanotechnology</i> , 2008 , 19, 085605	3.4	79
Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. <i>Carbon</i> , 2013 , 51, 185-194	10.4	76
In-situ encapsulation of nickel particles in electrospun carbon nanofibers and the resultant electrochemical performance. <i>Chemistry - A European Journal</i> , 2009 , 15, 10718-22	4.8	75
Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. Journal of Materials Chemistry, 2012 , 22, 14661		74
Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. <i>Chemistry - A European Journal</i> , 2010 , 16, 11543-8	4.8	73
SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6981-6	3.6	67
Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. <i>Polymer</i> , 2009 , 50, 605-612	3.9	62
	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacynolaritile submircon composite fiber-based lithium-ion battery separators. <i>Journal of Power Sources</i> , 2011, 196, 436-441 Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. <i>Energy and Environmental Science</i> , 2010, 3, 124-129 Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanses as stable and binder-free cathodes for rechargeable lithium-ion batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012, 4, 1273-80 Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. <i>Journal of Materials Chemistry</i> , 2009, 19, 559 Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009, 11, 795-798 Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. <i>Electrochemistry Communications</i> , 2009, 11, 684-66 Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. <i>Journal of Power Sources</i> , 2011, 196, 7692-7699 Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. <i>Journal of Materials Chemistry</i> , 2009, 19, 4992 Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2010, 195, 5025-5031 Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015, 7, 24895-901 Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. <i>Nanotechnology</i> , 2008, 19, 085605 Structure control and performance im	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. Journal of Power Sources, 2011, 196, 436-441 Evaluation of SI/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy and Environmental Science, 2010, 3, 124-129 35-4 Carbon nanotube-loaded electrospun LifePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. ACS Applied Materials & Bamp, Interfaces, 2012, 4, 1273-80 Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. Journal of Materials Chemistry, 2009, 19, 5593 Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochemistry Communications, 2009, 11, 795-798 S1-1 Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochemistry Communications, 2009, 11, 684-6871 Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7692-7699 Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. Journal of Materials Chemistry, 2009, 19, 4992 Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. Journal of Power Sources, 2011, 195, 5025-5031 Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-ion Batteries. ACS Applied Materials & Bamp; Interfaces, 2015, 7, 24895-901 9-5 Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnology, 2008, 19, 085605 Structure control and performanc

11	Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries. KONA Powder and Particle Journal, 2010 , 28, 50-73	3.4	59	
10	Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	55	
9	Formation and electrochemical performance of copper/carbon composite nanofibers. <i>Electrochimica Acta</i> , 2010 , 55, 1605-1611	6.7	48	•
8	Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. <i>RSC Advances</i> , 2012 , 2, 192-198	3.7	47	
7	Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(L-lactide) blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2009 , 47, 493-503	2.6	35	•
6	LiFePO4 nanoparticles encapsulated in graphene-containing carbon nanofibers for use as energy storage materials. <i>Journal of Renewable and Sustainable Energy</i> , 2012 , 4, 013121	2.5	30	
5	Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. <i>Polymer</i> , 2010 , 51, 4368-4374	3.9	28	
4	A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 425-433	2.9	19	
3	Synthesis and Electrocatalysis of Carbon Nanofiber-Supported Platinum by 1-AP Functionalization and Polyol Processing Technique. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3791-3797	3.8	17	
2	Electrospun carbon nanofiber-supported Pt-Pd alloy composites for oxygen reduction. <i>Journal of Materials Research</i> , 2010 , 25, 1329-1335	2.5	15	
1	Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and ENADH. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 1287-1294	2.6	10	