List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185196/publications.pdf Version: 2024-02-01

IAN RAKKED

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Seed banks and seed dispersal: important topics in restoration ecology§. Acta Botanica Neerlandica, 1996, 45, 461-490.	0.9	570
3	An Improved Method for Seed-Bank Analysis: Seedling Emergence After Removing the Soil by Sieving. Functional Ecology, 1996, 10, 144.	3.6	429
4	Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology, 1998, 12, 834-842.	3.6	410
5	Ecological correlates of seed persistence in soil in the north-west European flora. Journal of Ecology, 1998, 86, 163-169.	4.0	342
6	Selfâ€Organization and Vegetation Collapse in Salt Marsh Ecosystems. American Naturalist, 2005, 165, E1-E12.	2.1	242
7	Vegetation Succession and Herbivory in a Salt Marsh: Changes Induced by Sea Level Rise and Silt Deposition Along an Elevational Gradient. Journal of Ecology, 1997, 85, 799.	4.0	226
8	Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. Journal of Ecology, 2003, 91, 855-866.	4.0	223
9	Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology, 2004, 92, 786-796.	4.0	220
10	Dispersal failure contributes to plant losses in NW Europe. Ecology Letters, 2009, 12, 66-74.	6.4	214
11	Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biological Conservation, 2005, 123, 249-268.	4.1	208
12	Are seed dormancy and persistence in soil related?. Seed Science Research, 2003, 13, 97-100.	1.7	170
13	Long-term changes of salt marsh communities by cattle grazing. Plant Ecology, 1990, 89, 137-148.	1.2	152
14	Wet meadow restoration in Western Europe: A quantitative assessment of the effectiveness of several techniques. Biological Conservation, 2007, 140, 318-328.	4.1	133
15	Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Applied Vegetation Science, 2006, 9, 157-162.	1.9	131
16	The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Plant Ecology, 1985, 62, 391-398.	1.2	130
17	The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquatic Botany, 2002, 73, 211-221.	1.6	126
18	Connecting seas: western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Global Change Biology, 2005, 11, 894-908.	9.5	124

#	Article	IF	CITATIONS
19	Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 2013, 172, 231-243.	2.0	123
20	Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. Journal of Ecology, 1999, 87, 265-272.	4.0	116
21	Salt marshes along the coast of The Netherlands. Hydrobiologia, 1993, 265, 73-95.	2.0	115
22	Soil seed bank dynamics in hayfield succession. Journal of Ecology, 2000, 88, 594-607.	4.0	114
23	Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. Journal of Coastal Conservation, 2013, 17, 301-325.	1.6	113
24	Effects of resource competition and herbivory on plant performance along a natural productivity gradient. Journal of Ecology, 2000, 88, 317-330.	4.0	110
25	Nutrient limitation and plant species composition in temperate salt marshes. Oecologia, 1997, 111, 325.	2.0	101
26	Do plant traits retrieved from a database accurately predict onâ€site measurements?. Journal of Ecology, 2013, 101, 662-670.	4.0	94
27	The impact of herbivores on nitrogen mineralization rate: consequences for salt-marsh succession. Oecologia, 1999, 118, 225-231.	2.0	87
28	Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Molecular Ecology, 2003, 12, 505-515.	3.9	87
29	Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. Journal of Applied Ecology, 2005, 42, 844-851.	4.0	85
30	The impact of groundwater level on soil seed bank survival. Seed Science Research, 1998, 8, 399-404.	1.7	81
31	Restoration of saltâ€marsh vegetation in relation to site suitability, species pool and dispersal traits. Journal of Applied Ecology, 2008, 45, 904-912.	4.0	77
32	DISPERSAL, GERMINATION AND EARLY ESTABLISHMENT OF HALOPHYTES AND GLYCOPHYTES ON A GRAZED AND ABANDONED SALT-MARSH GRADIENT. New Phytologist, 1985, 101, 291-308.	7.3	76
33	Longâ€term vegetation changes in experimentally grazed and ungrazed backâ€barrier marshes in the Wadden Sea. Applied Vegetation Science, 2002, 5, 45-54.	1.9	76
34	Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh. Applied Vegetation Science, 2002, 5, 55-62.	1.9	68
35	Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos, 2007, 116, 742-750.	2.7	67
36	Plant colonization after managed realignment: the relative importance of diaspore dispersal. Journal of Applied Ecology, 2005, 42, 770-777.	4.0	66

#	Article	lF	CITATIONS
37	How species traits and affinity to urban land use control largeâ€scale species frequency. Diversity and Distributions, 2009, 15, 533-546.	4.1	66
38	To move or not to move: determinants of seed retention in a tidal marsh. Functional Ecology, 2008, 22, 720-727.	3.6	64
39	N, K and P deficiency in chronosequential cut summer-dry grasslands on gley podzol after the cessation of fertilizer application. Plant and Soil, 1996, 178, 121-131.	3.7	62
40	TOP-DOWN CONTROL OF SMALL HERBIVORES ON SALT-MARSH VEGETATION ALONG A PRODUCTIVITY GRADIENT. Ecology, 2005, 86, 914-923.	3.2	61
41	Effects of grazing management on biodiversity across trophic levels–The importance of livestock species and stocking density in salt marshes. Agriculture, Ecosystems and Environment, 2016, 235, 329-339.	5.3	60
42	Compensatory growth of Festuca rubra after grazing: can migratory herbivores increase their own harvest during staging?. Functional Ecology, 2005, 19, 961-969.	3.6	57
43	Competition and herbivory during salt marsh succession: the importance of forb growth strategy. Journal of Ecology, 2000, 88, 571-583.	4.0	52
44	Effects of long-term grazing on sediment deposition and salt-marsh accretion rates. Estuarine, Coastal and Shelf Science, 2013, 133, 109-115.	2.1	51
45	Potential for Sudden Shifts in Transient Systems: Distinguishing Between Local and Landscape-Scale Processes. Ecosystems, 2008, 11, 1133-1141.	3.4	50
46	Does zonation reflect the succession of salt-marsh vegetation? A comparison of an estuarine and a coastal bar island marsh in The Netherlands. Acta Botanica Neerlandica, 1993, 42, 435-445.	0.9	49
47	Does livestock grazing affect sediment deposition and accretion rates in salt marshes?. Estuarine, Coastal and Shelf Science, 2013, 135, 296-305.	2.1	49
48	Twenty years of salt marsh succession on a Dutch coastal barrier island. Journal of Coastal Conservation, 1997, 3, 9-18.	1.6	48
49	Local aboveâ€ground persistence of vascular plants: Lifeâ€history tradeâ€offs and environmental constraints. Journal of Vegetation Science, 2007, 18, 489-497.	2.2	48
50	Nitrogen accumulation and plant species replacement in three salt marsh systems in the Wadden Sea. Journal of Coastal Conservation, 1997, 3, 19-26.	1.6	46
51	Spatioâ€ŧemporal dynamics of the invasive plant species <i>Elytrigia atherica</i> on natural salt marshes. Applied Vegetation Science, 2013, 16, 205-216.	1.9	43
52	Sand in the salt marsh: Contribution of high-energy conditions to salt-marsh accretion. Marine Geology, 2011, 282, 240-254.	2.1	42
53	Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach. Folia Geobotanica, 2005, 40, 53-67.	0.9	41
54	Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia, 2004, 141, 452-459.	2.0	40

#	Article	IF	CITATIONS
55	Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil. Ecosystems, 2015, 18, 671-685.	3.4	40
56	Changes in a salt-marsh vegetation as a result of grazing and mowing ? A five-year study of permanent plots. Plant Ecology, 1978, 38, 77-87.	1.2	38
57	Astroturf seed traps for studying hydrochory. Functional Ecology, 2004, 18, 141-147.	3.6	38
58	The effect of water supply on seedâ€bank analysis using the seedlingâ€emergence method. Functional Ecology, 1999, 13, 428-430.	3.6	36
59	Digestive strategies in two sympatrically occurring lagomorphs. Journal of Zoology, 2004, 264, 171-178.	1.7	33
60	Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. Journal for Nature Conservation, 2005, 13, 1-15.	1.8	32
61	Livestock grazing and trampling of birds' nests: an experiment using artificial nests. Journal of Coastal Conservation, 2013, 17, 409-416.	1.6	30
62	Grazed vegetation mosaics do not maximize arthropod diversity: Evidence from salt marshes. Biological Conservation, 2013, 164, 150-157.	4.1	30
63	Seed dispersal by small herbivores and tidal water: are they important filters in the assembly of salt-marsh communities?. Functional Ecology, 2005, 19, 665-673.	3.6	28
64	The Impact of Sheep Grazing on Net Nitrogen Mineralization Rate in Two Temperate Salt Marshes. Plant Biology, 2001, 3, 553-560.	3.8	25
65	Subtle interplay of competition and facilitation among small herbivores in coastal grasslands. Functional Ecology, 2006, 20, 908-915.	3.6	24
66	Effects of livestock species and stocking density on accretion rates in grazed salt marshes. Estuarine, Coastal and Shelf Science, 2015, 152, 109-115.	2.1	24
67	Biodiversity of soil biota and plants in abandoned arable fields and grasslands under restoration management. Biodiversity and Conservation, 1996, 5, 211-221.	2.6	22
68	Do intrinsically dominant and subordinate species exist? A test statistic for field data. Applied Vegetation Science, 1998, 1, 15-20.	1.9	21
69	Annual nitrogen budget of a temperate coastal barrier salt-marsh system along a productivity gradient at low and high marsh elevation. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 128-141.	2.7	21
70	Grassland cutting regimes affect soil properties, and consequently vegetation composition and belowground plant traits. Plant and Soil, 2013, 366, 401-413.	3.7	21
71	Spatial patterns in accretion on barrier-island salt marshes. Geomorphology, 2011, 134, 280-296.	2.6	20
72	Livestock as a potential biological control agent for an invasive wetland plant. PeerJ, 2014, 2, e567.	2.0	20

#	Article	IF	CITATIONS
73	Dispersal by cattle of salt-marsh and dune species into salt-marsh and dune communities. Plant Ecology, 2008, 197, 43-54.	1.6	19
74	Progress in vegetation science: Trends over the past three decades and new horizons. Journal of Vegetation Science, 2019, 30, 1-4.	2.2	19
75	What factors determined restoration success of a salt marsh ten years after deâ€embankment?. Applied Vegetation Science, 2016, 19, 66-77.	1.9	18
76	Flower production of <i>Aster tripolium</i> is affected by behavioral differences in livestock species and stocking densities: the role of activity and selectivity. Ecological Research, 2013, 28, 821-831.	1.5	13
77	Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS ONE, 2019, 14, e0215645.	2.5	13
78	Salinization during salt-marsh restoration after managed realignment. Journal of Coastal Conservation, 2015, 19, 405-415.	1.6	12
79	The Impact of Herbivory and Competition on Flowering and Survival during Saltmarsh Succession. Plant Biology, 2000, 2, 68-76.	3.8	10
80	Seeds, Ecology, Biogeography and Evolution of Dormancy, and Germination. C.C. Baskin & J.M. Baskin. Plant Ecology, 2001, 152, 204-205.	1.6	10
81	Moderate livestock grazing of salt, and brackish marshes benefits breeding birds along the mainland coast of the Wadden Sea. Wilson Journal of Ornithology, 2015, 127, 467-476.	0.2	10
82	Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale. PLoS ONE, 2017, 12, e0169960.	2.5	10
83	Long-Term Effects of Sheep Grazing in Various Densities on Marsh Properties and Vegetation Dynamics in Two Different Salt-Marsh Zones. Estuaries and Coasts, 2020, 43, 298-315.	2.2	10
84	Long-term decline in a salt marsh hare population largely driven by bottom-up factors. Ecoscience, 2015, 22, 71-82.	1.4	9
85	Environmental Impacts—Coastal Ecosystems. Regional Climate Studies, 2016, , 275-314.	1.2	9
86	Small herbivores slow down species loss up to 22 years but only at early successional stage. Journal of Ecology, 2019, 107, 2688-2696.	4.0	8
87	Long-term management is needed for conserving plant diversity in a Wadden Sea salt marsh. Biodiversity and Conservation, 2020, 29, 2329-2341.	2.6	8
88	Behaviour of horses and cattle at two stocking densities in a coastal salt marsh. Journal of Coastal Conservation, 2017, 21, 369-379.	1.6	6
89	A Diachronic Triangular Perspective on Landscapes: a Conceptual Tool for Research and Management Applied to Wadden Sea Salt Marshes. Maritime Studies, 2021, 20, 235-254.	2.2	6
90	Longâ€ŧerm crossâ€scale comparison of grazing and mowing on plant diversity and community composition in a saltâ€marsh system. Journal of Ecology, 2021, 109, 3737-3747.	4.0	6

#	Article	IF	CITATIONS
91	Salt Marsh Accretion With and Without Deep Soil Subsidence as a Proxy for Sea-Level Rise. Estuaries and Coasts, 2022, 45, 1562-1582.	2.2	6
92	Long-Term Effects of Scrub Clearance and Litter Removal on the Re-Establishment of Dry Alvar Grassland Species. Annales Botanici Fennici, 2012, 49, 21-30.	0.1	5
93	Foraging site choice and diet selection of Meadow PipitsAnthus pratensisbreeding on grazed salt marshes. Bird Study, 2014, 61, 101-110.	1.0	5
94	Shading results in depletion of the soil seed bank. Nordic Journal of Botany, 2014, 32, 674-679.	0.5	5
95	Temporal and Spatial Accretion Patterns and the Impact of Livestock Grazing in a Restored Coastal Salt Marsh. Estuaries and Coasts, 2022, 45, 510-522.	2.2	5
96	Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh. Applied Vegetation Science, 2002, 5, 55.	1.9	5
97	Utilisation of a coastal grassland by geese after managed re-alignment. Journal of Coastal Conservation, 2014, 18, 471-479.	1.6	4
98	Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes. Journal of Marine Science and Engineering, 2016, 4, 21.	2.6	4
99	Competitors, ruderals and stress-tolerators. New Phytologist, 2002, 156, 6-8.	7.3	3
100	Restoration of inland brackish vegetation by largeâ€scale transfer of coastal driftline material. Applied Vegetation Science, 2017, 20, 641-650.	1.9	3
101	Regeneration in chalk grassland during 150Âyears in a military area. Applied Vegetation Science, 2014, 17, 611-612.	1.9	0