
Jonathan A Winawer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185180/publications.pdf Version: 2024-02-01

IONATHAN A MINAWER

#	Article	IF	CITATIONS
1	Asymmetries around the visual field: From retina to cortex to behavior. PLoS Computational Biology, 2022, 18, e1009771.	1.5	24
2	Mapping spatial frequency preferences across human primary visual cortex. Journal of Vision, 2022, 22, 3.	0.1	8
3	Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nature Communications, 2022, 13, .	5.8	32
4	Population Receptive Field Shapes in Early Visual Cortex Are Nearly Circular. Journal of Neuroscience, 2021, 41, 2420-2427.	1.7	16
5	Cortical magnification in human visual cortex parallels task performance around the visual field. ELife, 2021, 10, .	2.8	52
6	Conservation across individuals of cortical crowding distance in human V4. Journal of Vision, 2021, 21, 2675.	0.1	7
7	Cross-dataset reproducibility of human retinotopic maps. NeuroImage, 2021, 244, 118609.	2.1	34
8	A population receptive field model of the magnetoencephalography response. NeuroImage, 2021, 244, 118554.	2.1	1
9	A visual encoding model links magnetoencephalography signals to neural synchrony in human cortex. NeuroImage, 2021, 245, 118655.	2.1	3
10	Stimulus-dependent contrast sensitivity asymmetries around the visual field. Journal of Vision, 2020, 20, 18.	0.1	31
11	A validation framework for neuroimaging software: The case of populationÂreceptive fields. PLoS Computational Biology, 2020, 16, e1007924.	1.5	32
12	Asymmetries around the visual field in human visual cortex. Journal of Vision, 2020, 20, 543.	0.1	0
13	Computational validity of neuroimaging software: the case of population receptive fields. Journal of Vision, 2020, 20, 341.	0.1	1
14	A validation framework for neuroimaging software: The case of population receptive fields. , 2020, 16, e1007924.		0
15	A validation framework for neuroimaging software: The case of population receptive fields. , 2020, 16, e1007924.		0
16	A validation framework for neuroimaging software: The case of population receptive fields. , 2020, 16, e1007924.		0
17	A validation framework for neuroimaging software: The case of population receptive fields. , 2020, 16, e1007924.		0
18	iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 2019, 6, 102.	2.4	96

#	Article	IF	CITATIONS
19	Cerebellar Function: Multiple Topographic Maps of Visual Space. Current Biology, 2019, 29, R699-R702.	1.8	3
20	Modeling visual performance differences â€~around' the visual field: A computational observer approach. PLoS Computational Biology, 2019, 15, e1007063.	1.5	38
21	Predicting neuronal dynamics with a delayed gain control model. PLoS Computational Biology, 2019, 15, e1007484.	1.5	21
22	Using fMRI to link crowding to hV4. Journal of Vision, 2019, 19, 14a.	0.1	2
23	An image-computable model for the stimulus selectivity of gamma oscillations. ELife, 2019, 8, .	2.8	37
24	Heritability of V1/V2/V3 surface area in the HCP 7T Retinotopy Dataset. Journal of Vision, 2019, 19, 41b.	0.1	3
25	A model-based approach to link MEG responses to neuronal synchrony in visual cortex. Journal of Vision, 2019, 19, 211d.	0.1	1
26	Long-term spatial memory representations in human visual cortex. Journal of Vision, 2019, 19, 291c.	0.1	0
27	Compressive Temporal Summation in Human Visual Cortex. Journal of Neuroscience, 2018, 38, 691-709.	1.7	70
28	The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis. Journal of Vision, 2018, 18, 23.	0.1	139
29	Human posterior parietal cortex responds to visual stimuli as early as peristriate occipital cortex. European Journal of Neuroscience, 2018, 48, 3567-3582.	1.2	19
30	Sensory and decision-making processes underlying perceptual adaptation. Journal of Vision, 2018, 18, 10.	0.1	12
31	The HCP 7T Retinotopy Dataset: A new resource for investigating the organization of human visual cortex. Journal of Vision, 2018, 18, 215.	0.1	5
32	Conservation of crowding distance in human V4. Journal of Vision, 2018, 18, 856.	0.1	3
33	A non-invasive, quantitative study of broadband spectral responses in human visual cortex. PLoS ONE, 2018, 13, e0193107.	1.1	13
34	Bayesian analysis of retinotopic maps. ELife, 2018, 7, .	2.8	102
35	Mapping Spatial Frequency Preferences in the Human Visual Cortex. Journal of Vision, 2018, 18, 253.	0.1	1
36	Towards a computational observer model of perceptual performance fields. Journal of Vision, 2018, 18, 212.	0.1	1

#	Article	IF	CITATIONS
37	Gamma oscillations and photosensitive epilepsy. Current Biology, 2017, 27, R336-R338.	1.8	45
38	Identification of the ventral occipital visual field maps in the human brain. F1000Research, 2017, 6, 1526.	0.8	14
39	Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biology, 2017, 15, e2001461.	2.6	79
40	Visual field map clusters in human frontoparietal cortex. ELife, 2017, 6, .	2.8	92
41	Temporal windows in psychophysical discrimination and in neural responses in human visual cortex. Journal of Vision, 2017, 17, 191.	0.1	Ο
42	An anatomically-defined template of BOLD response in V1-V3. Journal of Vision, 2017, 17, 585.	0.1	0
43	A tool for automatic identification of cerebral sinuses and corresponding artifacts in fMRI. Journal of Vision, 2017, 17, 295.	0.1	2
44	The topographical relationship between visual field maps in association cortex and brain areas involved in non-visual cognition. Journal of Vision, 2017, 17, 178.	0.1	0
45	Conservation of crowding distance in human V4. Journal of Vision, 2017, 17, 19.	0.1	2
46	A Predominantly Visual Subdivision of The Right Temporo-Parietal Junction (vTPJ). Cerebral Cortex, 2016, 26, bhu226.	1.6	9
47	Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience. Neuron, 2016, 92, 1213-1219.	3.8	87
48	A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. Cerebral Cortex, 2016, 26, 2205-2214.	1.6	139
49	12. Visual system architecture. , 2016, , 159-180.		Ο
50	Human V4 and ventral occipital retinotopic maps. Visual Neuroscience, 2015, 32, E020.	0.5	64
51	Gamma oscillations in visual cortex: the stimulus matters. Trends in Cognitive Sciences, 2015, 19, 57-58.	4.0	46
52	Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences, 2015, 19, 349-357.	4.0	203
53	Prevalence of Learned Grapheme-Color Pairings in a Large Online Sample of Synesthetes. PLoS ONE, 2015, 10, e0118996.	1.1	37
54	Orientation-tuned surround suppression improves computational models of human visual cortex. Journal of Vision, 2015, 15, 1001.	0.1	1

#	Article	IF	CITATIONS
55	Cultural Differences in Perceptual Reorganization in US and Pirahã Adults. PLoS ONE, 2014, 9, e110225.	1.1	6
56	27.2: <i>Distinguished Paper</i> : Modeling Visible Differences: The Computational Observer Model. Digest of Technical Papers SID International Symposium, 2014, 45, 352-356.	0.1	17
57	Human trichromacy revisited. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E260-9.	3.3	59
58	Asynchronous Broadband Signals Are the Principal Source of the BOLD Response in Human Visual Cortex. Current Biology, 2013, 23, 1145-1153.	1.8	140
59	A Brain Area for Visual Numerals. Journal of Neuroscience, 2013, 33, 6709-6715.	1.7	185
60	Connective field modeling. NeuroImage, 2013, 66, 376-384.	2.1	75
61	A Two-Stage Cascade Model of BOLD Responses in Human Visual Cortex. PLoS Computational Biology, 2013, 9, e1003079.	1.5	89
62	Learning, Memory, and Synesthesia. Psychological Science, 2013, 24, 258-265.	1.8	79
63	Compressive spatial summation in human visual cortex. Journal of Neurophysiology, 2013, 110, 481-494.	0.9	270
64	GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Frontiers in Neuroscience, 2013, 7, 247.	1.4	183
65	Homeostasis of Eye Growth and the Question of Myopia. Neuron, 2012, 74, 207.	3.8	1
66	Problem of signal contamination in interhemispheric dual-sided subdural electrodes. Epilepsia, 2011, 52, e176-e180.	2.6	3
67	Imaging retinotopic maps in the human brain. Vision Research, 2011, 51, 718-737.	0.7	333
68	Simulating imaging systems: Photons, parts and people. , 2011, , .		0
69	A motion aftereffect from visual imagery of motion. Cognition, 2010, 114, 276-284.	1.1	59
70	Mapping hV4 and ventral occipital cortex: The venous eclipse. Journal of Vision, 2010, 10, 1-1.	0.1	189
71	Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration. Neuron, 2010, 65, 21-31.	3.8	140
72	Casting shadows on synesthesia. Journal of Vision, 2010, 3, 619-619.	0.1	1

#	Article	IF	CITATIONS
73	Effects of language on color discriminability. Journal of Vision, 2010, 3, 711-711.	0.1	4
74	Layered image representations and the perception of lightness. Journal of Vision, 2010, 3, 58-58.	0.1	1
75	Structural integration in language and music: Evidence for a shared system. Memory and Cognition, 2009, 37, 1-9.	0.9	208
76	Object Perception, Attention, and Memory 2007 Conference Report 15th Annual Meeting, Long Beach, California, USA. Visual Cognition, 2008, 16, 90-143.	0.9	3
77	A Motion Aftereffect From Still Photographs Depicting Motion. Psychological Science, 2008, 19, 276-283.	1.8	104
78	Layered image representations and the computation of surface lightness. Journal of Vision, 2008, 8, 18.	0.1	51
79	Temporal Constraints on Experimental Emmetropization in Infant Monkeys. , 2007, 48, 957.		54
80	Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7780-7785.	3.3	628
81	Synesthetic Colors Determined by Having Colored Refrigerator Magnets in Childhood. Cortex, 2006, 42, 175-183.	1.1	128
82	Image segmentation and lightness perception. Nature, 2005, 434, 79-83.	13.7	162
83	In a Matter of Minutes, the Eye Can Know Which Way to Grow. , 2005, 46, 2238.		144
84	Ocular compensation for alternating myopic and hyperopic defocus. Vision Research, 2005, 45, 1667-1677.	0.7	45
85	Homeostasis of Eye Growth and the Question of Myopia. Neuron, 2004, 43, 447-468.	3.8	827
86	Further evidence that chick eyes use the sign of blur in spectacle lens compensation. Vision Research, 2003, 43, 1519-1531.	0.7	49
87	Potency of Myopic Defocus in Spectacle Lens Compensation. , 2003, 44, 2818.		104
88	Temporal constraints on lens compensation in chicks. Vision Research, 2002, 42, 2651-2668.	0.7	111