Gottfried Alber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD154 Expression Indicates T Cell Activation Following Tetanus Toxoid Vaccination of Horses. Frontiers in Immunology, 2022, 13, 805026.	4.8	5
2	Construction of a 3D brain extracellular matrix model to study the interaction between microglia and T cells in coâ€culture. European Journal of Neuroscience, 2021, 53, 4034-4050.	2.6	6
3	Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients. Frontiers in Immunology, 2021, 12, 709695.	4.8	8
4	Immunogenicity and protective efficacy of a Streptococcus suis vaccine composed of six conserved immunogens. Veterinary Research, 2021, 52, 112.	3.0	10
5	Group 2 Innate Lymphoid Cells (ILC2) Suppress Beneficial Type 1 Immune Responses During Pulmonary Cryptococcosis. Frontiers in Immunology, 2020, 11, 209.	4.8	15
6	Analysis of Porcine Pro- and Anti-Inflammatory Cytokine Induction by S. suis In Vivo and In Vitro. Pathogens, 2020, 9, 40.	2.8	15
7	Survival of Streptococcus suis in Porcine Blood Is Limited by the Antibody- and Complement-Dependent Oxidative Burst Response of Granulocytes. Infection and Immunity, 2020, 88, .	2.2	8
8	Orf virus infection of human keratinocytes and dermal fibroblasts: Limited virus detection and interference with intercellular adhesion moleculeâ€1 upâ€regulation. Experimental Dermatology, 2019, 28, 142-151.	2.9	9
9	Vaccination with the immunoglobulin M-degrading enzyme of Streptococcus suis, Ide, leads to protection against a highly virulent serotype 9 strain. Vaccine: X, 2019, 3, 100046.	2.1	10
10	Orf virus (ORFV) infection in a three-dimensional human skin model: Characteristic cellular alterations and interference with keratinocyte differentiation. PLoS ONE, 2019, 14, e0210504.	2.5	9
11	Canine tissue-associated CD4+CD8α+ double-positive T cells are an activated T cell subpopulation with heterogeneous functional potential. PLoS ONE, 2019, 14, e0213597.	2.5	15
12	Distinct Features of Canine Non-conventional CD4â^'CD8αâ^' Double-Negative TCRαβ+ vs. TCRγδ+ T Cells. Frontiers in Immunology, 2019, 10, 2748.	4.8	21
13	Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Scientific Reports, 2018, 8, 2681.	3.3	73
14	Canine peripheral blood CD4 + CD8 + double-positive T cell subpopulations exhibit distinct T cell phenotypes and effector functions. Veterinary Immunology and Immunopathology, 2017, 185, 48-56.	1.2	26
15	Pathogen-Reactive T Helper Cell Analysis in the Pig. Frontiers in Immunology, 2017, 8, 565.	4.8	21
16	Lung epithelium is the major source of IL-33 and is regulated by IL-33-dependent and IL-33-independent mechanisms in pulmonary cryptococcosis. Pathogens and Disease, 2016, 74, ftw086.	2.0	39
17	Therapeutic expansion of CD4 ⁺ FoxP3 ⁺ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection. Pathogens and Disease, 2016, 74, ftw020.	2.0	8
18	A novel experimental model of <i>Cryptococcus neoformansâ€</i> related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis. European Journal of Immunology, 2015, 45, 3339-3350.	2.9	31

GOTTFRIED ALBER

#	Article	IF	CITATIONS
19	Peripheral canine CD4+CD8+ double-positive T cells – unique amongst others. Veterinary Immunology and Immunopathology, 2015, 168, 169-175.	1.2	9
20	Analysis of asthma patients for cryptococcal seroreactivity in an urban German area. Medical Mycology, 2015, 53, 576-586.	0.7	8
21	IL-4 Receptor-Alpha-Dependent Control of Cryptococcus neoformans in the Early Phase of Pulmonary Infection. PLoS ONE, 2014, 9, e87341.	2.5	27
22	Canine CD4+CD8+ double-positive T cells can develop from CD4+ and CD8+ T cells. Veterinary Immunology and Immunopathology, 2014, 162, 72-82.	1.2	10
23	CD4 ⁺ FoxP3 ⁺ regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection. European Journal of Immunology, 2014, 44, 3596-3604.	2.9	42
24	Identification of Toll-Like Receptor 9 as Parapoxvirus Ovis-Sensing Receptor in Plasmacytoid Dendritic Cells. PLoS ONE, 2014, 9, e106188.	2.5	13
25	Canine CD4+CD8+ double positive T cells in peripheral blood have features of activated T cells. Veterinary Immunology and Immunopathology, 2012, 149, 157-166.	1.2	35
26	Eosinophils Contribute to IL-4 Production and Shape the T-Helper Cytokine Profile and Inflammatory Response in Pulmonary Cryptococcosis. American Journal of Pathology, 2011, 179, 733-744.	3.8	63
27	Inactivated parapoxvirus ovis activates canine blood phagocytes and T lymphocytes. Veterinary Microbiology, 2009, 137, 260-267.	1.9	26
28	A Geneâ€Dosage Effect for Interleukinâ€4 Receptor αâ€Chain Expression Has an Impact on Th2â€Mediated Allergic Inflammation during Bronchopulmonary Mycosis. Journal of Infectious Diseases, 2008, 198, 1714-1721.	4.0	33
29	IL-13 Induces Disease-Promoting Type 2 Cytokines, Alternatively Activated Macrophages and Allergic Inflammation during Pulmonary Infection of Mice with <i>Cryptococcus neoformans</i> . Journal of Immunology, 2007, 179, 5367-5377.	0.8	249
30	IL-23 Enhances the Inflammatory Cell Response in <i>Cryptococcus neoformans</i> Infection and Induces a Cytokine Pattern Distinct from IL-12. Journal of Immunology, 2006, 176, 1098-1106.	0.8	200
31	αβ T Cell Receptor-positive Cells and Interferon-γ, but not Inducible Nitric Oxide Synthase, Are Critical for Granuloma Necrosis in a Mouse Model of Mycobacteria-induced Pulmonary Immunopathology. Journal of Experimental Medicine, 2001, 194, 1847-1859.	8.5	101
32	Interleukin-12 Is Essential for a Protective Th1 Response in Mice Infected with <i>Cryptococcus neoformans</i> . Infection and Immunity, 1998, 66, 4994-5000.	2.2	282