
Alessandro Fanzani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Letters, 2021, 505, 1-12.	3.2	21
2	Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, inÂvitro and inÀvivo, the alveolar phenotype subtype. International Journal of Radiation Biology, 2021, 97, 943-957.	1.0	13
3	MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells. International Journal of Molecular Sciences, 2021, 22, 10671.	1.8	14
4	Clinically relevant radioresistant rhabdomyosarcoma cell lines: functional, molecular and immune-related characterization. Journal of Biomedical Science, 2020, 27, 90.	2.6	18
5	Modulating the dose-rate differently affects the responsiveness of human epithelial prostate- and mesenchymal rhabdomyosarcoma-cancer cell line to radiation. International Journal of Radiation Biology, 2020, 96, 823-835.	1.0	12
6	<p>Animal models of well-differentiated/dedifferentiated liposarcoma: utility and limitations</p> . OncoTargets and Therapy, 2019, Volume 12, 5257-5268.	1.0	10
7	Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Letters, 2019, 461, 90-101.	3.2	22
8	Urocortin Induces Phosphorylation of Distinct Residues of Signal Transducer and Activator of Transcription 3 (STAT3) via Different Signaling Pathways. Medical Science Monitor Basic Research, 2019, 25, 139-152.	2.6	6
9	The Antitumor Didox Acts as an Iron Chelator in Hepatocellular Carcinoma Cells. Pharmaceuticals, 2019, 12, 129.	1.7	8
10	NRF2 orchestrates the redox regulation induced by radiation therapy, sustaining embryonal and alveolar rhabdomyosarcoma cells radioresistance. Journal of Cancer Research and Clinical Oncology, 2019, 145, 881-893.	1.2	28
11	Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Letters, 2019, 449, 135-144.	3.2	17
12	Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 393-409.	1.2	25
13	Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1717-1730.	1.2	56
14	Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation, 2017, 94, 21-26.	1.0	5
15	Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. International Journal of Molecular Sciences, 2017, 18, 1718.	1.8	41
16	Cavin-2 is a specific marker for detection of well-differentiated liposarcoma. Biochemical and Biophysical Research Communications, 2017, 493, 660-665.	1.0	5
17	Melatonin action in tumor skeletal muscle cells: an ultrastructural study. Acta Histochemica, 2016, 118, 278-285.	0.9	20
18	Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma. European Journal of Cell Biology, 2016, 95, 252-264.	1.6	19

2

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
20	Uncovering metabolism in rhabdomyosarcoma. Cell Cycle, 2016, 15, 184-195.	1.3	17
21	MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE, 2015, 10, e0130287.	1.1	2
22	Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncology Reports, 2015, 34, 279-287.	1.2	19
23	Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Laboratory Investigation, 2015, 95, 585-602.	1.7	37
24	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	1.1	17
25	Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends in Molecular Medicine, 2013, 19, 546-554.	3.5	22
26	Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicology and Applied Pharmacology, 2013, 271, 196-205.	1.3	32
27	Autophagic Degradation Contributes to Muscle Wasting in Cancer Cachexia. American Journal of Pathology, 2013, 182, 1367-1378.	1.9	212
28	Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 163-179.	2.9	264
29	Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skeletal Muscle, 2012, 2, 23.	1.9	29
30	Rhabdomyosarcomas: an overview on the experimental animal models. Journal of Cellular and Molecular Medicine, 2012, 16, 1377-1391.	1.6	27
31	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
32	Caveolin 1 is a marker of poor differentiation in Rhabdomyosarcoma. European Journal of Cancer, 2011, 47, 761-772.	1.3	21
33	Differentiation of human rhabdomyosarcoma RD cells is regulated by reciprocal, functional interactions between myostatin, p38 and extracellular regulated kinase signalling pathways. European Journal of Cancer, 2011, 47, 1095-1105.	1.3	13
34	Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 468-479.	1.8	21
35	Caveolins in rhabdomyosarcoma. Journal of Cellular and Molecular Medicine, 2011, 15, 2553-2568.	1.6	13
36	Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems. Toxicology and Applied Pharmacology, 2011, 250, 312-321.	1.3	59

Alessandro Fanzani

#	ARTICLE	IF	CITATIONS
37	Muscle Wasting and Impaired Myogenesis in Tumor Bearing Mice Are Prevented by ERK Inhibition. PLoS ONE, 2010, 5, e13604.	1.1	154
38	L6E9 Myoblasts Are Deficient of Myostatin and Additional TGF-βMembers Are Candidates to Developmentally Control Their Fiber Formation. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	7
39	Characterization of the APâ€l μ1A and μ1B adaptins in zebrafish (<i>Danio rerio</i>). Developmental Dynamics, 2010, 239, 2404-2412.	0.8	18
40	Defective myogenic differentiation of human rhabdomyosarcoma cells is characterized by sialidase Neu2 loss of expression. Cell Biology International, 2009, 33, 1020-1025.	1.4	7
41	The cytosolic sialidase Neu2 is degraded by autophagy during myoblast atrophy. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 817-828.	1.1	14
42	The enzymatic activity of sialidase Neu2 is inversely regulated during in vitro myoblast hypertrophy and atrophy. Biochemical and Biophysical Research Communications, 2008, 370, 376-381.	1.0	10
43	Clozapine-Induced Alteration of Clucose Homeostasis in the Rat: The Contribution of Hypothalamic-Pituitary-Adrenal Axis Activation. Neuroendocrinology, 2007, 85, 61-70.	1.2	57
44	Hypertrophy and atrophy inversely regulate Caveolin-3 expression in myoblasts. Biochemical and Biophysical Research Communications, 2007, 357, 314-318.	1.0	15
45	Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophyâ€related caveolinâ€3 P104L and TFT mutants. FEBS Letters, 2007, 581, 5099-5104.	1.3	13
46	Insulin-like growth factor 1 signaling regulates cytosolic sialidase Neu2 expression during myoblast differentiation and hypertrophy. FEBS Journal, 2006, 273, 3709-3721.	2.2	24