

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11850451/publications.pdf Version: 2024-02-01

VI FEI

#	Article	IF	CITATIONS
1	Energy efficient method of supercritical extraction of oil from oil shale. Energy Conversion and Management, 2022, 252, 115108.	9.2	16
2	A comparison of the thermal conversion behaviour of marine kerogens isolated from oil shales by NaOH-HCl and HCl-HF methods. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105023.	5.5	7
3	Upgrading Microalgal Biocrude Using NiMo/Al-SBA-15 as a Catalyst. Energy & Fuels, 2020, 34, 4618-4631.	5.1	9
4	Structural Characteristics of Low-Aromaticity Marine and Lacustrine Oil Shales and their NaOH-HCl Kerogens Determined Using 13C NMR and XPS. Australian Journal of Chemistry, 2020, 73, 1237.	0.9	10
5	Long time, low temperature pyrolysis of El-Lajjun oil shale. Journal of Analytical and Applied Pyrolysis, 2018, 130, 135-141.	5.5	35
6	Long-Time-Period, Low-Temperature Reactions of Green River Oil Shale. Energy & Fuels, 2018, 32, 4808-4822.	5.1	16
7	Characterisation of the products of low temperature pyrolysis of Victorian brown coal in a semi-continuous/flow through system. Fuel, 2018, 234, 1422-1430.	6.4	11
8	Hydrothermal dewatering of a Chinese lignite and properties of the solid products. Fuel, 2016, 180, 473-480.	6.4	94
9	Recovery of shale oil condensate from different oil shales using a flow-through apparatus. Fuel Processing Technology, 2015, 133, 167-172.	7.2	14
10	Thermo-chemical reactions of algae, grape marc and wood chips using a semi-continuous/flow-through system. Fuel, 2015, 158, 927-936.	6.4	6
11	The structure and reactivity of a low-sulfur lacustrine oil shale (Colorado U.S.A.) compared with those of a high-sulfur marine oil shale (Julia Creek, Queensland, Australia). Fuel Processing Technology, 2015, 135, 91-98.	7.2	22
12	A comparison of the structure and reactivity of five Jordanian oil shales from different locations. Fuel, 2014, 119, 313-322.	6.4	23
13	Comparison of the yields and structure of fuels derived from freshwater algae (torbanite) and marine algae (El-Lajjun oil shale). Fuel, 2013, 105, 83-89.	6.4	20
14	Evaluation of several methods of extraction of oil from a Jordanian oil shale. Fuel, 2012, 92, 281-287.	6.4	32
15	The effect of cation content of some raw and ion-exchanged Victorian lignites on their equilibrium moisture content and surface area. Fuel, 2007, 86, 2890-2897.	6.4	22
16	A comparison of primary lignite structure as determined by pyrolysis techniques with chemical characteristics determined by other methods. Fuel, 2006, 85, 998-1003.	6.4	12
17	A comparison of adsorption isotherms using different techniques for a range of raw, water- and acid-washed lignites. Fuel, 2006, 85, 1559-1565.	6.4	23
18	Comparison of some physico–chemical properties of Victorian lignite dewatered under non-evaporative conditions. Fuel, 2006, 85, 1987-1991.	6.4	43

YI FEI	
Y I F F	1

#	Article	IF	CITATIONS
19	Lignite–water interactions studied by phase transition—differential scanning calorimetry. Fuel, 2005, 84, 1557-1557.	6.4	24