Kai Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11849648/publications.pdf

Version: 2024-02-01

		567281	996975
17	932	15	15
papers	citations	h-index	g-index
18	18	18	1099
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.	7.3	151
2	Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular Plant-Microbe Interactions, 2011, 24, 1530-1539.	2.6	119
3	<i>Phytophthora</i> Suppressor of RNA Silencing 2 Is a Conserved RxLR Effector that Promotes Infection in Soybean and <i>Arabidopsis thaliana</i> Molecular Plant-Microbe Interactions, 2014, 27, 1379-1389.	2.6	101
4	Two Host Cytoplasmic Effectors Are Required for Pathogenesis of <i>Phytophthora sojae</i> by Suppression of Host Defenses Â. Plant Physiology, 2011, 155, 490-501.	4.8	100
5	Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature, 2020, 581, 199-203.	27.8	99
6	Intracellular and Extracellular Phosphatidylinositol 3-Phosphate Produced by Phytophthora Species Is Important for Infection. Molecular Plant, 2013, 6, 1592-1604.	8.3	51
7	PsSAK1, a Stress-Activated MAP Kinase of <i>Phytophthora sojae</i> , Is Required for Zoospore Viability and Infection of Soybean. Molecular Plant-Microbe Interactions, 2010, 23, 1022-1031.	2.6	45
8	High-throughput, single-particle tracking reveals nested membrane domains that dictate KRasG12D diffusion and trafficking. ELife, 2019, 8 , .	6.0	40
9	Fast and multiplexed superresolution imaging with DNA-PAINT-ERS. Nature Communications, 2020, 11 , 4339.	12.8	37
10	Manipulating Endoplasmic Reticulum-Plasma Membrane Tethering in Plants Through Fluorescent Protein Complementation. Frontiers in Plant Science, 2019, 10, 635.	3.6	36
11	PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genetics and Biology, 2014, 65, 14-24.	2.1	35
12	A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development. PLoS ONE, 2012, 7, e40246.	2.5	33
13	The heat shock transcription factor <scp>P</scp> s <scp>HSF</scp> 1 of <scp><i>P</i></scp> <i>P</i> <ii>P<ii>Nytophthora sojae</ii><ii>Is required for oxidative stress tolerance and detoxifying the plant oxidative burst. Environmental Microbiology, 2015, 17, 1351-1364.</ii></ii>	3.8	32
14	Interpretation of cancer mutations using a multiscale map of protein systems. Science, 2021, 374, eabf3067.	12.6	29
15	Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants. Frontiers in Plant Science, 2019, 10, 636.	3.6	24
16	Studying Ras Nanocluster Formation on the Cell Membrane with Correlative Superresolution and Electron Microscopies. Microscopy and Microanalysis, 2019, 25, 1220-1221.	0.4	0
17	Microbe-Independent Entry of Oomycete RxLR Effectors and Fungal RxLR-Like Effectors Into Plant and Animal Cells Is Specific and Reproducible. Molecular Plant-Microbe Interactions, 2015, 2015, 51-56.	2.6	0