Han-Qing Yu

List of Publications by Citations

Source: https://exaly.com/author-pdf/118487/han-qing-yu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

655 papers

39,522 citations

105 h-index 162 g-index

681 ext. papers

47,607 ext. citations

10 avg, IF 8.09 L-index

#	Paper	IF	Citations
655	Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. <i>Biotechnology Advances</i> , 2010 , 28, 882-94	17.8	1739
654	Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. <i>Chemical Reviews</i> , 2015 , 115, 12251-85	68.1	792
653	Extracellular electron transfer mechanisms between microorganisms and minerals. <i>Nature Reviews Microbiology</i> , 2016 , 14, 651-62	22.2	732
652	Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy and Environmental Science, 2014 , 7, 911-924	35.4	641
651	Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetraceline degradation under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2017 ,	21.8	597
650	Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. <i>Water Research</i> , 2006 , 40, 1233-9	12.5	523
649	Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. <i>Free Radical Biology and Medicine</i> , 2007 , 42, 1524-33	7.8	444
648	Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. <i>Bioresource Technology</i> , 2012 , 121, 235-40	11	402
647	Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with MnFeO Nanospheres: Synergism between Mn and Fe. <i>Environmental Science & Environmental Science & </i>	1- 1 281	8 ³⁸⁴
646	Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. <i>International Journal of Hydrogen Energy</i> , 2002 , 27, 1359-1365	6.7	352
645	Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. <i>Journal of Colloid and Interface Science</i> , 2018 , 519, 273-284	9.3	341
644	Thermochemical conversion of lignin to functional materials: a review and future directions. <i>Green Chemistry</i> , 2015 , 17, 4888-4907	10	339
643	Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 32887-32900	9.5	325
642	Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. <i>Environmental Science & Eps</i> 2010, 44, 4355-60	10.3	297
641	Emerging applications of biochar-based materials for energy storage and conversion. <i>Energy and Environmental Science</i> , 2019 , 12, 1751-1779	35.4	265
640	FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter. <i>Environmental Science & Environmental &</i>	10.3	264
639	Fates of Chemical Elements in Biomass during Its Pyrolysis. <i>Chemical Reviews</i> , 2017 , 117, 6367-6398	68.1	255

(2011-2017)

638	co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 133-147	21.8	254
637	Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. <i>Water Research</i> , 2013 , 47, 607-14	12.5	230
636	Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. <i>Environmental Science & Environmental Science & Envi</i>	10.3	221
635	Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. <i>Water Research</i> , 2009 , 43, 751-61	12.5	216
634	Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. <i>Water Research</i> , 2012 , 46, 1817-24	12.5	215
633	Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. <i>Nature Communications</i> , 2015 , 6, 8696	17.4	203
632	Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 5533-5541	13.1	202
631	Chemistry: Reuse water pollutants. <i>Nature</i> , 2015 , 528, 29-31	50.4	196
630	Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. <i>Bioresource Technology</i> , 2018 , 247, 537-544	11	194
629	Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 320-328	21.8	193
628	Insight into the roles of microbial extracellular polymer substances in metal biosorption. <i>Bioresource Technology</i> , 2014 , 160, 15-23	11	193
627	Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. <i>Water Research</i> , 2013 , 47, 2643-8	12.5	191
626	Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. <i>Chemical Society Reviews</i> , 2014 , 43, 7718-45	58.5	185
625	Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. <i>Water Research</i> , 2011 , 45, 5633-40	12.5	184
624	Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. <i>Bioresource Technology</i> , 2010 , 101, 2924-30	11	184
623	Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. <i>Chemical Engineering Journal</i> , 2019 , 378, 122149	14.7	183
622	Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. <i>Water Research</i> , 2013 , 47, 5298-306	12.5	183
621	Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	181

620	A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. <i>Journal of Hazardous Materials</i> , 2016 , 316, 11-8	12.8	177
619	pH dependence of structure and surface properties of microbial EPS. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 737-44	10.3	171
618	Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & amp; Interfaces, 2014, 6, 7766-72	9.5	168
617	Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. <i>Water Research</i> , 2017 , 111, 204-212	12.5	167
616	An MEC-MFC-coupled system for biohydrogen production from acetate. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	167
615	Response of anaerobic granular sludge to single-wall carbon nanotube exposure. <i>Water Research</i> , 2015 , 70, 1-8	12.5	166
614	Physicochemical characteristics of microbial granules. <i>Biotechnology Advances</i> , 2009 , 27, 1061-1070	17.8	166
613	Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. <i>Applied Microbiology and Biotechnology</i> , 2005 , 67, 125-30	5.7	165
612	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3694-369	9 <mark>1</mark> 6.4	163
611	Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8978-8985	13	161
610	Soluble microbial products and their implications in mixed culture biotechnology. <i>Trends in Biotechnology</i> , 2011 , 29, 454-63	15.1	161
609	Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. <i>Bioresource Technology</i> , 2017 , 241, 1127-1137	11	158
608	Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 2012, 46, 799-8	8 07 .5	156
60 7	Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. <i>Applied Microbiology and Biotechnology</i> , 2005 , 69, 216-22	5.7	155
606	Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge. <i>Environmental Science & Environmental Science & E</i>	10.3	154
605	Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. <i>Environmental Science</i> & *amp; Technology, 2016 , 50, 3882-9	10.3	153
604	Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. <i>Environmental Science & Environmental Science & Environmen</i>	7 ¹ 403	153
603	Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. <i>Water Research</i> , 2015 , 78, 111-20	12.5	152

602	Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miR-23a-3p and Up-regulate Programmed Death Ligand 1 Expression in Macrophages. <i>Hepatology</i> , 2019 , 70, 241-258	11.2	150
601	A Fenton-like process for the enhanced activated sludge dewatering. <i>Chemical Engineering Journal</i> , 2015 , 272, 128-134	14.7	150
600	Harvest and utilization of chemical energy in wastes by microbial fuel cells. <i>Chemical Society Reviews</i> , 2016 , 45, 2847-70	58.5	148
599	Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. <i>Water Research</i> , 2016 , 101, 555-563	12.5	147
598	Enhanced arsenic removal from water by hierarchically porous CeOE/rO[hanospheres: role of surface- and structure-dependent properties. <i>Journal of Hazardous Materials</i> , 2013 , 260, 498-507	12.8	146
597	Development of a novel bioelectrochemical membrane reactor for wastewater treatment. <i>Environmental Science & Environmental Sc</i>	10.3	146
596	Novel Bi D IIIPhotocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation. <i>ACS Applied Materials & Distriction (Control of Bisphenol A under Visible-Light Irradiation)</i>	9.5	140
595	Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling. <i>Water Research</i> , 2009 , 43, 1350-8	12.5	140
594	Extracellular polymeric substances of biofilms: Suffering from an identity crisis. <i>Water Research</i> , 2019 , 151, 1-7	12.5	138
593	High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 13951-9	10.3	137
592	Identification and quantification of anammox bacteria in eight nitrogen removal reactors. <i>Water Research</i> , 2010 , 44, 5014-20	12.5	135
591	Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 62, 83-90	6	133
590	A microbial fuel cellthembrane bioreactor integrated system for cost-effective wastewater treatment. <i>Applied Energy</i> , 2012 , 98, 230-235	10.7	132
589	Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. <i>Bioresource Technology</i> , 2006 , 97, 1302-7	11	132
588	Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. <i>Environmental Science & Environmental Science & Environ</i>	10.3	129
587	Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. <i>Water Research</i> , 2009 , 43, 5267-75	12.5	129
586	Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 493-505	21.8	127
585	Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. <i>Scientific Reports</i> , 2014 , 4, 3735	4.9	127

584	Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation. <i>Bioresource Technology</i> , 2016 , 206, 134-140	11	127
583	Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. <i>Water Research</i> , 2008 , 42, 3343-52	12.5	127
582	Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. <i>Water Research</i> , 2017 , 124, 269-279	12.5	126
581	Stimulating sediment bioremediation with benthic microbial fuel cells. <i>Biotechnology Advances</i> , 2015 , 33, 1-12	17.8	126
580	Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. <i>Water Research</i> , 2010 , 44, 5298-305	12.5	126
579	Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. <i>Water Research</i> , 2019 , 155, 142-151	12.5	126
578	Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. <i>Nano Energy</i> , 2016 , 27, 526-534	17.1	123
577	Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles. <i>Environmental Science & Environmental Science & Environment</i>	10.3	123
576	Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 947-953	3.8	123
575	Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge. <i>Water Research</i> , 2019 , 148, 239-249	12.5	119
574	Bi24O31Br10 nanosheets with controllable thickness for visible Ight I riven catalytic degradation of tetracycline hydrochloride. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 615-623	21.8	117
573	Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. <i>Water Research</i> , 2017 , 127, 150-161	12.5	117
572	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018 , 133, 272-281	12.5	117
571	Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics. <i>Journal of Hazardous Materials</i> , 2006 , 137, 498-508	12.8	117
570	Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example. <i>Environmental Science & Environmental </i>	10.3	116
569	From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. <i>Biotechnology Advances</i> , 2011 , 29, 972-82	17.8	116
568	Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 2652-6	4.8	116
567	Effects of temperature and substrate concentration on biological hydrogen production from starch. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 2558-2566	6.7	116

566	A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 338-43	11.8	116
565	Porous ZnO-Coated CoO Nanorod as a High-Energy-Density Supercapacitor Material. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 23163-23173	9.5	115
564	Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. <i>Environmental Science</i> & amp; Technology, 2009 , 43, 3372-7	10.3	115
563	The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. <i>Water Research</i> , 2019 , 164, 114934	12.5	114
562	A kinetic approach to anaerobic hydrogen-producing process. Water Research, 2007, 41, 1152-60	12.5	114
561	Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. <i>Applied Catalysis B: Environmental</i> , 2016 , 195, 69-76	21.8	114
560	Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. <i>Water Research</i> , 2018 , 130, 281-290	12.5	112
559	Stability of sludge flocs under shear conditions: roles of extracellular polymeric substances (EPS). <i>Biotechnology and Bioengineering</i> , 2006 , 93, 1095-102	4.9	110
558	Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism. <i>Water Research</i> , 2020 , 173, 115559	12.5	110
557	Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. <i>Organic Letters</i> , 2017 , 19, 2122-2125	6.2	109
556	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-73	33 2.5	107
555	Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. <i>Journal of Hazardous Materials</i> , 2009 , 171, 780-5	12.8	107
554	Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. <i>Green Chemistry</i> , 2014 , 16, 4198	10	106
553	An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. <i>Chemosphere</i> , 2016 , 144, 160-7	8.4	105
552	Fractionating soluble microbial products in the activated sludge process. Water Research, 2010, 44, 2297	21 3 052	105
551	Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. <i>Chemical Communications</i> , 2011 , 47, 5795-7	5.8	105
550	Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 988-95	4.9	102
549	Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 659-665	21.8	101

548	Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. <i>Water Research</i> , 2008 , 42, 3173-81	12.5	101
547	Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 980-7	4.9	101
546	Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. <i>ACS Applied Materials & Dioanode (Conductive Carbon) and Materials & Dioanode (Conductive Carbon) as a bioanode for enhanced microbial electrocatalysis. <i>ACS Applied Materials & Dioanode (Conductive Carbon) as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Dioanode (Conductive Carbon) as a bioanode for enhanced microbial electrocatalysis. <i>ACS Applied Materials & Dioanode (Conductive Carbon) as a bioanode (Conductive Carbon) </i></i></i>	9.5	100
545	Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. <i>Energy and Environmental Science</i> , 2011 , 4, 1422	35.4	100
544	Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. <i>Chemosphere</i> , 2015 , 140, 12-7	8.4	99
543	Kinetic analysis of an anaerobic filter treating soybean wastewater. Water Research, 1998, 32, 3341-335	5 2 12.5	98
542	Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight. <i>Environmental Pollution</i> , 2018 , 233, 1-7	9.3	97
541	Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. <i>Bioresource Technology</i> , 2017 , 234, 456-465	11	96
540	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. <i>Water Research</i> , 2018 , 145, 113-124	12.5	96
539	DLVO approach to the flocculability of a photosynthetic H2-producing bacterium, Rhodopseudomonas acidophila. <i>Environmental Science & Environmental Sc</i>	10.3	95
538	Efficient electrochemical production of glucaric acid and H via glucose electrolysis. <i>Nature Communications</i> , 2020 , 11, 265	17.4	93
537	Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. <i>Electrochimica Acta</i> , 2014 , 139, 137-144	6.7	92
536	Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process. <i>Biotechnology and Bioengineering</i> , 2009 , 103, 490-9	4.9	92
535	Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. <i>Enzyme and Microbial Technology</i> , 2006 , 38, 905-913	3.8	92
534	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. <i>ACS Energy Letters</i> , 2020 , 5, 826-832	20.1	91
533	Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 1641-1647	6.7	90
532	Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. <i>Biochemical Engineering Journal</i> , 2005 , 23, 175-184	4.2	90
531	In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling. <i>Water Research</i> , 2013 , 47, 5794-800	12.5	88

(2004-2015)

530	Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. <i>Analyst, The</i> , 2015 , 140, 765-70	5	88
529	Manipulating the hydrogen production from acetate in a microbial electrolysis cellThicrobial fuel cell-coupled system. <i>Journal of Power Sources</i> , 2009 , 191, 338-343	8.9	88
528	Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. <i>Applied Microbiology and Biotechnology</i> , 2012 , 93, 1769-76	5.7	87
527	A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 2773-2776	6.7	87
526	Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Research, 2004, 38, 309-	- 16 .5	86
525	Potential impact of salinity on methane production from food waste anaerobic digestion. <i>Waste Management</i> , 2017 , 67, 308-314	8.6	85
524	Facile synthesis of InS/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 444-457	9.3	83
523	Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. <i>Journal of Environmental Management</i> , 2019 , 231, 370-37	9 .9	82
522	Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. <i>Science of the Total Environment</i> , 2019 , 663, 453-464	10.2	81
521	Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. <i>Energy and Environmental Science</i> , 2018 , 11, 1444-1448	35.4	81
520	Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. <i>Scientific Reports</i> , 2016 , 6, 20491	4.9	81
519	Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 12574-12581	3.9	81
518	Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions. <i>Environmental Science & Environmental </i>	10.3	81
517	Enhancing Extracellular Electron Transfer of Shewanella oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. <i>Environmental Science & Camp; Technology</i> , 2017 , 51, 5082-5089	10.3	80
516	Quantification of the interactions between Call+, Hgll+ and extracellular polymeric substances (EPS) of sludge. <i>Chemosphere</i> , 2013 , 93, 1436-41	8.4	80
515	Molecular Insights into Extracellular Polymeric Substances in Activated Sludge. <i>Environmental Science & Environmental Science</i>	10.3	78
514	Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2-x Single Crystals. <i>Environmental Science & Environmental Science & Envi</i>	10.3	78
513	Anaerobic degradation of cellulose by rumen microorganisms at various pH values. <i>Biochemical Engineering Journal</i> , 2004 , 21, 59-62	4.2	77

512	Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. <i>Journal of Catalysis</i> , 2017 , 352, 160-170	7.3	76
511	Revealing the Underlying Mechanisms of How Sodium Chloride Affects Short-Chain Fatty Acid Production from the Cofermentation of Waste Activated Sludge and Food Waste. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4675-4684	8.3	75
510	A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production. <i>Energy and Environmental Science</i> , 2014 , 7, 3033-3039	35.4	75
509	Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. <i>RSC Advances</i> , 2014 , 4, 21619-21624	3.7	75
508	Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. <i>Water Research</i> , 2007 , 41, 3152-8	12.5	75
507	Wastewater Opportunities for Denitrifying Anaerobic Methane Oxidation. <i>Trends in Biotechnology</i> , 2017 , 35, 799-802	15.1	74
506	Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. <i>Nature Communications</i> , 2013 , 4, 2249	17.4	73
505	Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis. <i>Environmental Science & Environmental Science & Company</i> , 2019, 53, 4683-4694	10.3	72
504	Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. <i>Water Research</i> , 2015 , 86, 85-95	12.5	72
503	Metal©rganic Framework Templated Pd@PdO©o3O4 Nanocubes as an Efficient Bifunctional Oxygen Electrocatalyst. <i>Advanced Energy Materials</i> , 2018 , 8, 1702734	21.8	72
502	Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). <i>Water Research</i> , 2016 , 106, 242-248	12.5	72
501	Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. <i>Water Research</i> , 2016 , 92, 78-86	12.5	71
500	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. <i>Bioresource Technology</i> , 2017 , 244, 920-928	11	71
499	Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. <i>Science of the Total Environment</i> , 2017 , 586, 1162-1169	10.2	7°
498	The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation. <i>Applied Microbiology and Biotechnology</i> , 2010 , 88, 789-97	5.7	70
497	Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. <i>Bioresource Technology</i> , 2018 , 262, 114-123	11	69
496	Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. <i>Water Research</i> , 2012 , 46, 3868-78	12.5	69
495	Hydrophobic Teflon films as concentrators for single-molecule SERS detection. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20986		69

(2017-2012)

494	Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1978-84	3.6	69
493	Electricity generation from mixed volatile fatty acids using microbial fuel cells. <i>Applied Microbiology and Biotechnology</i> , 2010 , 87, 2365-72	5.7	69
492	Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. <i>Water Research</i> , 2007 , 41, 39-46	12.5	69
491	Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. <i>Environmental Science & Environmental Science </i>	10.3	68
490	Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. <i>Water Research</i> , 2019 , 153, 217-228	12.5	67
489	Hydrophilic swellable metalBrganic framework encapsulated Pd nanoparticles as an efficient catalyst for Cr(VI) reduction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11680-11687	13	67
488	Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 1260-7	4.9	67
487	Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. <i>Applied Microbiology and Biotechnology</i> , 2007 , 75, 871	-5 87	67
486	Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. <i>Bioresource Technology</i> , 2011 , 102, 3471-9	11	66
485	Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. <i>Water Research</i> , 2009 , 43, 1247-56	12.5	66
484	Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. <i>Water Research</i> , 2008 , 42, 1583-94	12.5	66
483	Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge. <i>Bioresource Technology</i> , 2019 , 275, 163-171	11	66
482	Synthesis of Pt-Loaded Self-Interspersed Anatase TiO2 with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation. <i>ACS Applied Materials & Degradation and Self-Interfaces</i> , 2015, 7, 203	¥9 ⁵ -59	65
481	Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. <i>Journal of Hazardous Materials</i> , 2016 , 318, 460-467	12.8	65
480	Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. <i>Water Research</i> , 2012 , 46, 6210-7	12.5	65
479	Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber. <i>Journal of Hazardous Materials</i> , 2007 , 144, 200-7	12.8	65
478	Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin. <i>Bioresource Technology</i> , 2018 , 254, 194-202	11	65
477	Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. <i>Bioresource Technology</i> , 2017 , 238, 343-351	11	64

476	Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. <i>Water Research</i> , 2017 , 127, 32-40	12.5	64
475	PVA-based activated carbon fibers with lotus root-like axially porous structure. <i>Carbon</i> , 2006 , 44, 2059-	206.8	64
474	Mathematical modeling of aerobic granular sludge: a review. <i>Biotechnology Advances</i> , 2010 , 28, 895-909	917.8	63
473	Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1630-5	11.5	62
472	Mesophilic acidification of gelatinaceous wastewater. <i>Journal of Biotechnology</i> , 2002 , 93, 99-108	3.7	62
471	Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9966-71	3.6	61
470	Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. <i>Water Research</i> , 2021 , 191, 116799	12.5	61
469	Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. <i>Environment International</i> , 2019 , 129, 273-278	12.9	60
468	Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. <i>Applied Energy</i> , 2015 , 153, 63-69	10.7	60
467	Copper release from copper nanoparticles in the presence of natural organic matter. <i>Water Research</i> , 2015 , 68, 12-23	12.5	60
466	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. <i>Bioresource Technology</i> , 2018 , 268, 230-236	11	60
465	A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe. <i>Scientific Reports</i> , 2013 , 3, 1315	4.9	60
464	Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reduced@graphene oxide nanohybrids with an optimized autoxidation process. <i>Nano Energy</i> , 2018 , 43, 300-309	17.1	60
463	High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. <i>Nature Protocols</i> , 2016 , 11, 377-86	18.8	59
462	Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. <i>ACS Applied Materials & District Research</i> (1979) 15795-801	9.5	59
461	Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. <i>Applied Energy</i> , 2012 , 93, 229-236	10.7	59
460	Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. <i>Journal of Colloid and Interface Science</i> , 2020 , 574, 364-376	9.3	58
459	Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. <i>Bioresource Technology</i> , 2018 , 267, 141-1-	48 ¹	58

(2016-2017)

458	Changing profiles of bound water content and distribution in the activated sludge treatment by NaCl addition and pH modification. <i>Chemosphere</i> , 2017 , 186, 702-708	8.4	58
457	Exosomes from Melatonin Treated Hepatocellularcarcinoma Cells Alter the Immunosupression Status through STAT3 Pathway in Macrophages. <i>International Journal of Biological Sciences</i> , 2017 , 13, 723-734	11.2	58
456	A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell. <i>Applied Energy</i> , 2012 , 98, 594-596	10.7	58
455	Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 470-6	11.8	58
454	Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid: Performance, mechanism, and implication. <i>Bioresource Technology</i> , 2019 , 284, 456-465	11	57
453	Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. <i>Bioresource Technology</i> , 2012 , 110, 86-90	11	57
452	Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. <i>Water Research</i> , 2006 , 40, 3596-602	12.5	57
451	Layer-controlled growth of MoS2 on self-assembled flower-like Bi2S3 for enhanced photocatalysis under visible light irradiation. <i>NPG Asia Materials</i> , 2016 , 8, e263-e263	10.3	57
450	Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. <i>Water Research</i> , 2019 , 157, 191-200	12.5	56
449	Toxic effects of imidazolium-based ionic liquids on Caenorhabditis elegans: the role of reactive oxygen species. <i>Chemosphere</i> , 2013 , 93, 2399-404	8.4	56
448	Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation. <i>Environmental Science & Environmental & Envir</i>	10.3	56
447	Photoassisted Fenton degradation of polystyrene. <i>Environmental Science & Environmental Science & Envi</i>	10.3	56
446	Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3987-92	11.8	56
445	Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 5061-5071	6.7	56
444	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14104-14	4 ⁸ .∮3	56
443	Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. <i>Bioresource Technology</i> , 2018 , 254, 7-15	11	55
442	Microbial Products of Activated Sludge in Biological Wastewater Treatment Systems: A Critical Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2012 , 42, 187-223	11.1	55
441	Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. <i>Scientific Reports</i> , 2016 , 6, 39098	4.9	55

440	Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. <i>Bioresource Technology</i> , 2019 , 281, 158-167	11	54
439	Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. <i>Scientific Reports</i> , 2015 , 5, 9353	4.9	54
438	Exclusive Extracellular Bioreduction of Methyl Orange by Azo Reductase-Free Geobacter sulfurreducens. <i>Environmental Science & Environmental &</i>	10.3	54
437	Synthesis of BiOClx Br1-x Nanoplate Solid Solutions as a Robust Photocatalyst with Tunable Band Structure. <i>Chemistry - A European Journal</i> , 2015 , 21, 11872-7	4.8	54
436	Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis. <i>Water Research</i> , 2011 , 45, 674-80	12.5	54
435	Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. <i>Chemosphere</i> , 2018 , 213, 276-284	8.4	54
434	Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9120-9129	8.3	54
433	Fabrication of BiOBrxI(1-x) photocatalysts with tunable visible light catalytic activity by modulating band structures. <i>Scientific Reports</i> , 2016 , 6, 22800	4.9	53
432	Enhancement of azo dye decolourization in a MFC-MEC coupled system. <i>Bioresource Technology</i> , 2016 , 202, 93-100	11	53
43 ¹	Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment. <i>Water Research</i> , 2017 , 123, 216-223	12.5	53
430	Hydrogen production in a light-driven photoelectrochemical cell. <i>Applied Energy</i> , 2014 , 113, 164-168	10.7	53
429	Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach. <i>Water Research</i> , 2015 , 81, 325-32	12.5	52
428	Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms. <i>Environmental Science & Environmental Scienc</i>	10.3	52
427	Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1086-1094	6.7	52
426	FTIR-spectral analysis of two photosynthetic hydrogen-producing [corrected] strains and their extracellular polymeric substances. <i>Applied Microbiology and Biotechnology</i> , 2006 , 73, 204-10	5.7	52
425	Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: Reaction kinetics and intrinsic mechanism. <i>Chemical Engineering Journal</i> , 2019 , 355, 624	4 ⁻¹ 6376	52
424	Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. <i>Nature Sustainability</i> , 2020 , 3, 753-760	22.1	51
423	Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. <i>Bioresource Technology</i> , 2018 , 249, 431-438	11	51

422	Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. <i>Applied Microbiology and Biotechnology</i> , 2012 , 93, 847-57	5.7	51	
421	A modeling approach to describe ZVI-based anaerobic system. <i>Water Research</i> , 2013 , 47, 6007-13	12.5	51	
420	An innovative miniature microbial fuel cell fabricated using photolithography. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2841-6	11.8	51	
419	Modeling microbial products in activated sludge under feast-famine conditions. <i>Environmental Science & Environmental </i>	10.3	51	
418	Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. <i>International Biodeterioration and Biodegradation</i> , 2005 , 55, 233-238	4.8	51	
417	Fabrication of Metallic NickelCobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25174-25182	3.8	51	
416	A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 13984-13998	5.1	50	
415	Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. <i>Water Research</i> , 2016 , 88, 703-710	12.5	50	
414	Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. <i>Water Research</i> , 2007 , 41, 2361-70	12.5	50	
413	Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. <i>Environmental Science & Environmental </i>	10.3	49	
412	A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering. <i>Water and Environment Journal</i> , 2012 , 26, 560-566	1.7	49	
411	Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. <i>Bioresource Technology</i> , 2013 , 136, 711-4	11	49	
410	Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. <i>Environmental Science & Environmental Science & Env</i>	10.3	49	
409	Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents. Journal of Hazardous Materials, 2020 , 382, 121090	12.8	49	
408	One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr(VI) reduction. <i>Environmental Science: Nano</i> , 2016 , 3, 745-753	7.1	48	
407	A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by Gamma radiation. <i>RSC Advances</i> , 2012 , 2, 494-500	3.7	48	
406	Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat©aO2 Advanced Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 3544-3555	8.3	48	
405	Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. <i>Analytical Chemistry</i> , 2018 , 90, 3165-3173	7.8	47	

404	Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1632-1636	13	47
403	Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed bylhigh-energy {001} facets. <i>Water Research</i> , 2014 , 66, 273-282	12.5	47
402	Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. <i>Water Research</i> , 2012 , 46, 4371-8	12.5	47
401	Assessment of multiple sustainability demands for wastewater treatment alternatives: a refined evaluation scheme and case study. <i>Environmental Science & Environmental Scienc</i>	10.3	47
400	A generalized model for aerobic granule-based sequencing batch reactor. 1. Model development. <i>Environmental Science & Environmental &</i>	10.3	47
399	Novel Bi-Doped Amorphous SnO Nanoshells for Efficient Electrochemical CO Reduction into Formate at Low Overpotentials. <i>Advanced Materials</i> , 2020 , 32, e2002822	24	47
398	Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. <i>Journal of Environmental Management</i> , 2018 , 227, 406-	472	47
397	Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. <i>Environment International</i> , 2019 , 129, 86-94	12.9	46
396	Characterization of dewatering process of activated sludge assisted by cationic surfactants. <i>Biochemical Engineering Journal</i> , 2014 , 91, 174-178	4.2	46
395	Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11640-11645	6.7	46
394	Ni P d coreBhell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9233-9240	13	45
393	Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. <i>Bioresource Technology</i> , 2019 , 283, 316-325	11	45
392	Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. <i>Journal of Hazardous Materials</i> , 2015 , 282, 158-64	12.8	45
391	A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. <i>Nature Protocols</i> , 2014 , 9, 112-9	18.8	45
390	Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 345-53	4.9	45
389	Hydrodynamics of upflow anaerobic sludge blanket reactors. <i>AICHE Journal</i> , 2009 , 55, 516-528	3.6	45
388	Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 126-131	5.7	45
387	Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions. <i>Environmental Science & amp; Technology</i> , 2007 , 41, 1977-82	10.3	45

386	An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. <i>Nano Energy</i> , 2015 , 12, 33-4	2 7.1	44	
385	Carbon nanotubes promote Cr(VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. <i>Biochemical Engineering Journal</i> , 2013 , 77, 183-189	4.2	44	
384	Evaluating the impact of operational parameters on the formation of soluble microbial products (SMP) by activated sludge. <i>Water Research</i> , 2013 , 47, 1073-9	12.5	44	
383	Surfactant-mediated settleability and dewaterability of activated sludge. <i>Chemical Engineering Science</i> , 2014 , 116, 228-234	4.4	44	
382	Fractional characterization of a bio-oil derived from rice husk. <i>Biomass and Bioenergy</i> , 2011 , 35, 671-678	5.3	44	
381	Drag coefficient of porous and permeable microbial granules. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 1718-23	10.3	44	
380	Anaerobic digestion of cattail by rumen cultures. Waste Management, 2006, 26, 1222-8	8.6	44	
379	Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. <i>Journal of Cleaner Production</i> , 2019 , 229, 412-419	10.3	43	
378	Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge. <i>Bioresource Technology</i> , 2019 , 279, 307-316	11	43	
377	Selective electrochemical CO2 reduction on Cu-Pd heterostructure. <i>Applied Catalysis B:</i> Environmental, 2020 , 270, 118864	21.8	43	
376	Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors. <i>Bioresource Technology</i> , 2014 , 171, 472-6	11	43	
375	Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. <i>Water Research</i> , 2021 , 189, 116645	12.5	43	
374	Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III). <i>Chemosphere</i> , 2020 , 260, 127537	8.4	42	
373	Molecular Spectroscopic Characterization of Membrane Fouling: A Critical Review. <i>CheM</i> , 2018 , 4, 1492-	1,509	42	
372	Species of phosphorus in the extracellular polymeric substances of EBPR sludge. <i>Bioresource Technology</i> , 2013 , 142, 714-8	11	42	
371	Directed Biofabrication of Nanoparticles through Regulating Extracellular Electron Transfer. Journal of the American Chemical Society, 2017 , 139, 12149-12152	16.4	42	
370	Rapid Release of Arsenite from Roxarsone Bioreduction by Exoelectrogenic Bacteria. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 350-355	11	42	
369	Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM). <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 7959-79	637	42	

368	Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118405	21.8	42
367	Competitive sorption of heavy metals by water hyacinth roots. <i>Environmental Pollution</i> , 2016 , 219, 837-6	8 4 .5	42
366	Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. <i>Bioresource Technology</i> , 2019 , 274, 430-438	11	42
365	Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. <i>Bioresource Technology</i> , 2018 , 260, 61-67	11	41
364	Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight. <i>Water Research</i> , 2018 , 145, 146-152	12.5	41
363	Direct generation of hydroxyl radicals over bismuth oxybromide nanobelts with tuned band structure for photocatalytic pollutant degradation under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 464-472	21.8	41
362	Synthesis of Layered MnO2 Nanosheets for Enhanced Oxygen Reduction Reaction Catalytic Activity. <i>Electrochimica Acta</i> , 2014 , 132, 239-243	6.7	41
361	Degradation of landfill leachate compounds by persulfate for groundwater remediation. <i>Chemical Engineering Journal</i> , 2017 , 307, 399-407	14.7	41
360	Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. <i>Journal of Hazardous Materials</i> , 2017 , 323, 602-610	12.8	41
359	Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. <i>Waste Management</i> , 2015 , 46, 133-9	8.6	41
358	Inducing mechanism of biological phosphorus removal driven by the aerobic/extended-idle regime. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2798-807	4.9	41
357	Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. <i>Applied Microbiology and Biotechnology</i> , 2011 , 89, 201-8	5.7	41
356	Impairment of Biofilm Formation by TiO Photocatalysis through Quorum Quenching. <i>Environmental Science & Environmental Science</i>	10.3	41
355	Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection. <i>Analytical Chemistry</i> , 2020 , 92, 3990-3997	7.8	40
354	Mathematical modeling of autotrophic denitrification (AD) process with sulphide as electron donor. <i>Water Research</i> , 2016 , 91, 225-34	12.5	40
353	Effects of Cd(II) on wastewater biological nitrogen and phosphorus removal. <i>Chemosphere</i> , 2014 , 117, 27-32	8.4	40
352	Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 3308-3314	6.7	40
351	Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge. <i>Water Research</i> , 2020 , 170, 115300	12.5	40

Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. <i>Water Research</i> , 2021 , 188, 116539	12.5	40
Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 3748-3752	3.6	39
Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. <i>Chemosphere</i> , 2018 , 196, 78-86	8.4	39
Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. <i>Applied Microbiology and Biotechnology</i> , 2009 , 83, 1159-69	5.7	39
How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. <i>Chemosphere</i> , 2018 , 206, 491-501	8.4	39
Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. <i>Environmental Science & Enurgy</i> 2016, 50, 12421-12428	10.3	38
Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution. <i>Small</i> , 2018 , 14, e1801878	11	38
Light-driven microbial dissimilatory electron transfer to hematite. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23003-11	3.6	38
Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 167-171	11	38
Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. <i>Bioresource Technology</i> , 2014 , 160, 89-92	11	38
Kinetic analysis on the production of polyhydroxyalkanoates from volatile fatty acids by Cupriavidus necator with a consideration of substrate inhibition, cell growth, maintenance, and product formation. <i>Biochemical Engineering Journal</i> , 2010 , 49, 422-428	4.2	38
Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020 , 169, 115264	12.5	38
Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. <i>Bioresource Technology</i> , 2020 , 299, 122686	11	38
A robust cocatalyst Pd4S uniformly anchored onto Bi2S3 nanorods for enhanced visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4301-4306	13	37
Effect of nickel on the flocculability, settleability, and dewaterability of activated sludge. <i>Bioresource Technology</i> , 2017 , 224, 188-196	11	37
Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: Insights in direct interspecies electron transfer mechanism. <i>Bioresource Technology</i> , 2020 , 316, 123901	11	37
Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. <i>Scientific Reports</i> , 2014 , 4, 3732	4.9	36
Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO: Efficiency, characteristics and mechanisms. <i>Water Research</i> , 2019 , 165, 114980	12.5	36
	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. <i>Angewandte Chemie</i> , 2017, 129, 3748-3752 Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. <i>Chemosphere</i> , 2018, 196, 78-86 Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. <i>Applied Microbiology and Biotechnology</i> , 2009, 83, 1159-69 How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. <i>Chemosphere</i> , 2018, 206, 491-501 Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. <i>Environmental Science & amp</i> , <i>Technology</i> , 2016, 50, 12421-12428 Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution. <i>Small</i> , 2018, 14, e1801878 Light-driven microbial dissimilatory electron transfer to hematite. <i>Physical Chemistry Chemical Physics</i> , 2014, 16, 23003-11 Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. <i>Environmental Science and Technology Letters</i> , 2014, 1, 167-171 Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. <i>Bioresource Technology</i> , 2014, 160, 89-92 Kinetic analysis on the production of polyhydroxyalkanoates from volatile fatty acids by Cupriavidus necator with a consideration of substrate inhibition, cell growth, maintenance, and product formation. <i>Biochemical Engineering Journal</i> , 2010, 49, 422-428 Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. <i>Water Research</i> , 2020, 169, 115264 Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. <i>Bioresource Technology</i> , 2020, 299, 122686 A robust cocatalyst Pd4S uniformly anchored onto Bi253 nanorods for enhanced visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2015, 3, 4301-4306 Effect o	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie, 2017, 129, 3748-3752 36 Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere, 2018, 196, 78-86 Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. Applied Microbiology and Biotechnology, 2009, 83, 1159-69 How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 2018, 206, 491-501 Use of Nutrient Rich Hydrophytes to Create N.P-Dually Doped Porous Carbon with Robust Energy Storage Performance. Environmental Science & Amp; Technology, 2016, 50, 12421-12428 Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution. Small, 2018, 14, e1801878 Light-driven microbial dissimilatory electron transfer to hematite. Physical Chemistry Chemical Physics, 2014, 16, 23003-11 Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. Environmental Science and Technology Letters, 2014, 1, 167-171 Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. Bioresource Technology, 2014, 160, 89-92 Kinetic analysis on the production of polyhydroxyalkanoates from volatile fatty acids by Cupriavidus necator with a consideration of substrate inhibition, cell growth, maintenance, and product formation. Biochemical Engineering Journal, 2010, 49, 422-428 Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020, 169, 115264 Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresource Technology, 2020, 299, 122686 Arobust cocatalyst Pads uniformly anchored onto Bi253 nanorods for enhanced visible light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 4301-4306 Effect of nickel on the flocculabi

332	Carbon Nanotubes Alter the Electron Flow Route and Enhance Nitrobenzene Reduction by Shewanella oneidensis MR-1. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 128-132	11	36
331	Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. <i>CrystEngComm</i> , 2013 , 15, 7895	3.3	36
330	Denitrification in an integrated bioelectro-photocatalytic system. Water Research, 2017, 109, 88-93	12.5	36
329	The behavior of melamine in biological wastewater treatment system. <i>Journal of Hazardous Materials</i> , 2017 , 322, 445-453	12.8	36
328	Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1119-27	5.7	36
327	Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@Fe2O3-based composite conditioner. <i>Bioresource Technology</i> , 2016 , 218, 526-32	11	35
326	Outcompeting Presence of Acyl-Homoserine-Lactone (AHL)-Quenching Bacteria over AHL-Producing Bacteria in Aerobic Granules. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 36-	40 ¹	35
325	Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: Reactive kinetics, degradation products and mechanism. <i>Chemical Engineering Journal</i> , 2018 , 354, 983-9	94.7	35
324	Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. <i>Environmental Pollution</i> , 2017 , 231, 1388-1392	9.3	35
323	Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution. <i>Chemosphere</i> , 2014 , 113, 175-81	8.4	34
322	Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extended-idle regime. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 827-37	4.9	34
321	Augmentation of acyl homoserine lactones-producing and -quenching bacterium into activated sludge for its granulation. <i>Water Research</i> , 2017 , 125, 309-317	12.5	34
320	Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. <i>Bioresource Technology</i> , 2017 , 246, 234-241	11	34
319	Interaction between perfluorooctanoic acid and aerobic granular sludge. <i>Water Research</i> , 2020 , 169, 115249	12.5	34
318	Biogas production from anaerobic co-digestion of waste activated sludge: co-substrates and influencing parameters. <i>Reviews in Environmental Science and Biotechnology</i> , 2019 , 18, 771-793	13.9	33
317	Plasmonic photocatalyst Ag@AgCl/ZnSn(OH)6: synthesis, characterization and enhanced visible-light photocatalytic activity in the decomposition of dyes and phenol. <i>RSC Advances</i> , 2015 , 5, 631	1 <i>3</i> 2-63	184
316	Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2-x nanosheets: Ultrafast charge transfer and molecular oxygen activation. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119218	21.8	33
315	An approach for modeling two-step denitrification in activated sludge systems. <i>Chemical Engineering Science</i> , 2008 , 63, 1449-1459	4.4	33

(2019-2020)

314	Heterogeneous activation of persulfate by Ag doped BiFeO composites for tetracycline degradation. <i>Journal of Colloid and Interface Science</i> , 2020 , 566, 33-45	9.3	33
313	Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. <i>Water Research</i> , 2021 , 193, 116881	12.5	33
312	Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent. <i>Enzyme and Microbial Technology</i> , 2016 , 95, 230-235	3.8	33
311	In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. <i>Enzyme and Microbial Technology</i> , 2016 , 95, 185-191	3.8	33
310	A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies. <i>Chemical Engineering Journal</i> , 2021 , 407, 127078	14.7	33
309	Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems. <i>Water Research</i> , 2015 , 84, 171-80	12.5	32
308	Self-assembly Z-scheme heterostructured photocatalyst of Ag2O@Ag-modified bismuth vanadate for efficient photocatalytic degradation of single and dual organic pollutants under visible light irradiation. <i>RSC Advances</i> , 2016 , 6, 60291-60307	3.7	32
307	Lab-scale thermal analysis of electronic waste plastics. <i>Journal of Hazardous Materials</i> , 2016 , 310, 217-2	5 12.8	32
306	Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. <i>Environmental Science & Environmental Science & </i>	10.3	32
305	Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. <i>Science Advances</i> , 2020 , 6, eaay0748	14.3	32
304	Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system. <i>Chemosphere</i> , 2019 , 216, 749-756	8.4	32
303	Temperature-dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene. <i>Environmental Pollution</i> , 2017 , 222, 23-31	9.3	31
302	Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and AgPO. <i>Environment International</i> , 2019 , 126, 560-567	12.9	31
301	Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. <i>ACS Catalysis</i> , 2019 , 9, 3589-3594	13.1	31
300	Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 804-12	4.9	31
299	Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process. <i>Applied Microbiology and Biotechnology</i> , 2007 , 74, 208-14	5.7	31
298	Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose. <i>Biotechnology and Bioengineering</i> , 2004 , 87, 813-22	4.9	31
297	Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. <i>Bioresource Technology</i> , 2019 , 288, 121598	11	30

296	Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. <i>Chemosphere</i> , 2018 , 205, 484-492	8.4	30
295	Single-molecule and -particle probing crystal edge/corner as highly efficient photocatalytic sites on a single TiO particle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 18827-18833	11.5	30
294	Cultivation of aerobic granules for polyhydroxybutyrate production from wastewater. <i>Bioresource Technology</i> , 2014 , 159, 442-5	11	30
293	Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. <i>Environmental Pollution</i> , 2017 , 220, 1359-1365	9.3	30
292	Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers. Journal of Colloid and Interface Science, 2008, 321, 96-102	9.3	30
291	Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. <i>Environmental Pollution</i> , 2019 , 244, 228-237	9.3	30
2 90	Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. <i>Bioresource Technology</i> , 2019 , 294, 122235	11	29
289	Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: Performance, mechanism, and implication. <i>Bioresource Technology</i> , 2019 , 279, 108-116	11	29
288	Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid. <i>Chemosphere</i> , 2019 , 231, 495-501	8.4	29
287	Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate. <i>RSC Advances</i> , 2016 , 6, 987-994	3.7	29
286	Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. <i>Biochemical Engineering Journal</i> , 2016 , 105, 214-219	4.2	29
285	Sulfamethazine (SMZ) affects fermentative short-chain fatty acids production from waste activated sludge. <i>Science of the Total Environment</i> , 2018 , 639, 1471-1479	10.2	29
284	Anaerobic reduction of 2,6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 761-768	4.9	29
283	Electrochemically Catalytic Degradation of Phenol with Hydrogen Peroxide in Situ Generated and Activated by a Municipal Sludge-Derived Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5540-5546	8.3	28
282	Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots. <i>Environmental Science & Environmental &</i>	10.3	28
281	Bio-oil upgrading at ambient pressure and temperature using zero valent metals. <i>Green Chemistry</i> , 2012 , 14, 2226	10	28
280	Kinetics of reductive degradation of Orange II in aqueous solution by zero-valent iron. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 1429-1431	3.5	28
279	Biomethanation of brewery wastewater using an anaerobic upflow blanket filter. <i>Journal of Cleaner Production</i> , 1996 , 4, 219-223	10.3	28

(2021-2020)

278	Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. <i>Biotechnology Advances</i> , 2020 , 44, 107610	17.8	28
277	A Dissolution-Regeneration Route to Synthesize Blue Tungsten Oxide Flowers and their Applications in Photocatalysis and Gas Sensing. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500417	4.6	28
276	Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. <i>Water Research</i> , 2021 , 190, 116759	12.5	28
275	Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. <i>Journal of Hazardous Materials</i> , 2018 , 342, 150-157	12.8	28
274	Fluorescence Approach for the Determination of Fluorescent Dissolved Organic Matter. <i>Analytical Chemistry</i> , 2017 , 89, 4264-4271	7.8	27
273	Substrate Metabolism-Driven Assembly of High-Quality CdS Se Quantum Dots in Escherichia coli: Molecular Mechanisms and Bioimaging Application. <i>ACS Nano</i> , 2019 , 13, 5841-5851	16.7	27
272	Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis. <i>Journal of Hazardous Materials</i> , 2016 , 302, 262-266	12.8	27
271	Chemical recycling of the waste anodic electrolyte from the TiO2 nanotube preparation process to synthesize facet-controlled TiO2 single crystals as an efficient photocatalyst. <i>Green Chemistry</i> , 2014 , 16, 2745-2753	10	27
270	Redox reaction characteristics of riboflavin: a fluorescence spectroelectrochemical analysis and density functional theory calculation. <i>Bioelectrochemistry</i> , 2014 , 98, 103-8	5.6	27
269	Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). <i>Environmental Science: Nano</i> , 2017 , 4, 1817-1826	7.1	27
268	Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. <i>Nature Communications</i> , 2021 , 12, 303	17.4	27
267	Interaction between Dissolved Organic Matter and Long-Chain Ionic Liquids: A Microstructural and Spectroscopic Correlation Study. <i>Environmental Science & Environmental Scien</i>	10.3	26
266	Conformations and molecular interactions of poly-Eglutamic acid as a soluble microbial product in aqueous solutions. <i>Scientific Reports</i> , 2017 , 7, 12787	4.9	26
265	A simple method for assaying anaerobic biodegradation of dyes. <i>Bioresource Technology</i> , 2018 , 251, 204	1 <u>-2</u> 09	26
264	Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization. <i>Journal of Chromatography A</i> , 2014 , 1361, 162-8	4.5	26
263	An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal. <i>Scientific Reports</i> , 2015 , 5, 8602	4.9	26
262	Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution. <i>Bioresource Technology</i> , 2011 , 102, 6260-5	11	26
261	Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. <i>Water Research</i> , 2021 , 199, 117198	12.5	26

260	Electro-assisted groundwater bioremediation: fundamentals, challenges and future perspectives. <i>Bioresource Technology</i> , 2015 , 196, 677-84	11	25
259	An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. <i>Biosensors and Bioelectronics</i> , 2015 , 64, 25-9	11.8	25
258	Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics. <i>Scientific Reports</i> , 2016 , 6, 30082	4.9	25
257	Evolution of Membrane Fouling Revealed by Label-Free Vibrational Spectroscopic Imaging. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	25
256	Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	24
255	Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 861-866	5.8	24
254	Ammonia sensing by closely packed WO microspheres with oxygen vacancies. <i>Chemosphere</i> , 2018 , 204, 202-209	8.4	24
253	Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. <i>Journal of Hazardous Materials</i> , 2018 , 357, 244-252	12.8	24
252	A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 115-122	11.8	24
251	Hydration interactions and stability of soluble microbial products in aqueous solutions. <i>Water Research</i> , 2013 , 47, 5921-9	12.5	24
250	Hexagonal microrods of anatase tetragonal TiO2: self-directed growth and superior photocatalytic performance. <i>Chemical Communications</i> , 2013 , 49, 6075-7	5.8	24
249	Chemical-equilibrium-based model for describing the strength of sludge: taking hydrogen-producing sludge as an example. <i>Environmental Science & Environmental Science & Envir</i>	10.3	24
248	Hierarchically porous biochar for supercapacitor and electrochemical H2O2 production. <i>Chemical Engineering Journal</i> , 2020 , 402, 126171	14.7	24
247	Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials. <i>Electrochimica Acta</i> , 2017 , 225, 452-457	6.7	23
246	Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination. <i>Water Research</i> , 2016 , 102, 533-541	12.5	23
245	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. <i>Scientific Reports</i> , 2016 , 6, 21622	4.9	23
244	Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. <i>Bioresource Technology</i> , 2019 , 290, 121776	11	23
243	Novel online monitoring and alert system for anaerobic digestion reactors. <i>Environmental Science</i> & amp; Technology, 2011 , 45, 9093-100	10.3	23

242	Ultrasensitive Fluorescence Detection of Peroxymonosulfate Based on a Sulfate Radical-Mediated Aromatic Hydroxylation. <i>Analytical Chemistry</i> , 2018 , 90, 14439-14446	7.8	23	
241	Mediation of functional gene and bacterial community profiles in the sediments of eutrophic Chaohu Lake by total nitrogen and season. <i>Environmental Pollution</i> , 2019 , 250, 233-240	9.3	22	
240	Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 1294-1303	4.9	22	
239	Organocatalytic Electrochemical CH Lactonization of Aromatic Carboxylic Acids. <i>Synthesis</i> , 2018 , 50, 2924-2929	2.9	22	
238	Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. <i>Journal of Hazardous Materials</i> , 2016 , 307, 82-90	12.8	22	
237	Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime. <i>Chemosphere</i> , 2014 , 105, 75-81	8.4	22	
236	Capture of H2S from binary gas mixture by imidazolium-based ionic liquids with nonfluorous anions: A theoretical study. <i>AICHE Journal</i> , 2013 , 59, 3824-3833	3.6	22	
235	Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. <i>PLoS ONE</i> , 2014 , 9, e97751	3.7	22	
234	The fate of cyanuric acid in biological wastewater treatment system and its impact on biological nutrient removal. <i>Journal of Environmental Management</i> , 2018 , 206, 901-909	7.9	22	
233	Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121651	12.8	22	
232	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. <i>Water Research</i> , 2020 , 185, 116203	12.5	22	
231	Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. <i>Water Research</i> , 2016 , 98, 235-41	12.5	22	
230	Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 318-324	9.3	22	
229	Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. <i>Journal of Colloid and Interface Science</i> , 2021 , 586, 551-562	9.3	22	
228	Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	22	
227	Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 27628-27638	5.1	21	
226	Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method. <i>Bioresource Technology</i> , 2014 , 157, 161-5	11	21	
225	Photochemical Anti-Fouling Approach for Electrochemical Pollutant Degradation on Facet-Tailored TiO Single Crystals. <i>Environmental Science & Environmental Science & Environm</i>	10.3	21	

224	A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. <i>Mikrochimica Acta</i> , 2017 , 184, 4099-4106	5.8	21
223	Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. <i>Science of the Total Environment</i> , 2020 , 707, 136105	10.2	21
222	Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. <i>Bioresource Technology</i> , 2020 , 318, 124266	11	21
221	Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. <i>Separation and Purification Technology</i> , 2016 , 166, 164-176	08.3	21
220	A novel integrated approach to quantitatively evaluate the efficiency of extracellular polymeric substances (EPS) extraction process. <i>Applied Microbiology and Biotechnology</i> , 2012 , 96, 1577-85	5.7	20
219	Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1. <i>Biochemical Engineering Journal</i> , 2012 , 68, 227-230	4.2	20
218	Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. <i>Bioresource Technology</i> , 2020 , 299, 122611	11	20
217	Optimizing sludge dewatering with a combined conditioner of Fentonß reagent and cationic surfactant. <i>Journal of Environmental Sciences</i> , 2020 , 88, 21-30	6.4	20
216	One-way and two-way shape memory effects of a high-strain cis-1,4-polybutadienepolyethylene copolymer based dynamic network via self-complementary quadruple hydrogen bonding. <i>Polymer Chemistry</i> , 2019 , 10, 718-726	4.9	19
215	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. <i>Bioresource Technology</i> , 2019 , 284, 16-24	11	19
214	The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851	12.5	19
213	Carbon-Based Catalyst Synthesized and Immobilized under Calcium Salt Assistance To Boost Singlet Oxygen Evolution for Pollutant Degradation. <i>ACS Applied Materials & Degradation</i> 11, 43180-43187	9.5	19
212	Experimental and theoretical approaches for the surface interaction between copper and activated sludge microorganisms at molecular scale. <i>Scientific Reports</i> , 2014 , 4, 7078	4.9	19
211	The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method. <i>Journal of Hazardous Materials</i> , 2020 , 384, 12136	5 ^{32.8}	19
210	Uptake, accumulation and metabolization of 1-butyl-3-methylimidazolium bromide by ryegrass from water: Prospects for phytoremediation. <i>Water Research</i> , 2019 , 156, 82-91	12.5	18
209	Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment. <i>Chemosphere</i> , 2015 , 140, 79-84	8.4	18
208	Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of. <i>Environmental Science & Environmental Science & Environ</i>	10.3	18
207	A Near-Infrared Photoactuator Based on Shape Memory Semicrystalline Polymers toward Light-Fueled Crane, Grasper, and Walker. <i>Advanced Optical Materials</i> , 2019 , 7, 1900784	8.1	18

206	Hydrodynamics of an electrochemical membrane bioreactor. Scientific Reports, 2015, 5, 10387	4.9	18
205	Understanding the mechanism of how anaerobic fermentation deteriorates sludge dewaterability. <i>Chemical Engineering Journal</i> , 2021 , 404, 127026	14.7	18
204	A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). <i>Journal of Environmental Sciences</i> , 2021 , 108, 201-216	6.4	18
203	Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. <i>Bioresource Technology</i> , 2019 , 285, 121363	11	17
202	Application of a weak magnetic field to improve microbial fuel cell performance. <i>Ecotoxicology</i> , 2015 , 24, 2175-80	2.9	17
201	Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles. <i>Ecotoxicology</i> , 2015 , 24, 2067-	7 2 .9	17
200	Dendritic core-shell silica spheres with large pore size for separation of biomolecules. <i>Journal of Chromatography A</i> , 2018 , 1540, 31-37	4.5	17
199	Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: roles of insulin-like growth factor-1 signaling pathway. <i>Chemosphere</i> , 2014 , 112, 248-55	8.4	17
198	Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst. <i>Chemosphere</i> , 2015 , 125, 57-63	8.4	17
197	A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. <i>Biochemical Engineering Journal</i> , 2017 , 124, 130-137	4.2	16
196	A force-based mechanistic model for describing activated sludge settling process. <i>Water Research</i> , 2017 , 127, 118-126	12.5	16
195	Co-pyrolysis of biomass and soapstock in a downdraft reactor using a novel ZSM-5/SiC composite catalyst. <i>Bioresource Technology</i> , 2019 , 279, 202-208	11	16
194	Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO single crystals. <i>Water Research</i> , 2019 , 157, 30-39	12.5	16
193	Biogenic Synthesis of Pd-Based Nanoparticles with Enhanced Catalytic Activity. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1467-1475	5.6	16
192	Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors. <i>Scientific Reports</i> , 2016 , 6, 27243	4.9	16
191	Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. <i>Chemosphere</i> , 2018 , 211, 345-351	8.4	16
190	Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by Shewanella oneidensis MR-1 at the molecular scale. <i>Environmental Science: Nano</i> , 2017 , 4, 2395-2404	7.1	16
189	Sunlight-mediated degradation of methyl orange sensitized by riboflavin: Roles of reactive oxygen species. <i>Separation and Purification Technology</i> , 2015 , 142, 18-24	8.3	16

188	Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution. <i>Water Research</i> , 2012 , 46, 3490-6	12.5	16
187	Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine. <i>Chemosphere</i> , 2018 , 193, 472-478	8.4	16
186	Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography-tandem mass spectrometry. <i>Journal of Environmental Sciences</i> , 2017 , 52, 204-20	9 ^{6.4}	15
185	Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge. <i>Water Research</i> , 2017 , 113, 89-96	12.5	15
184	One-step synthesis of nonstoichiometric TiO2 with designed (101) facets for enhanced photocatalytic H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 165-172	21.8	15
183	Effect of citric acid on extracellular polymeric substances disruption and cell lysis in the waste activated sludge by pH regulation. <i>Bioresource Technology</i> , 2020 , 302, 122859	11	15
182	Experimental and theoretical analyses on the impacts of ionic surfactants on sludge properties. <i>Science of the Total Environment</i> , 2018 , 633, 198-205	10.2	15
181	Substrate consumption and biomass growth of Ralstonia eutropha at various S0/X0 levels in batch cultures. <i>Bioresource Technology</i> , 2007 , 98, 2599-604	11	15
180	Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World Journal of Microbiology and Biotechnology, 2007 , 23, 1015-1020	4.4	15
179	Diimine nickel complexes bearing axially bulky terphenyl and equatorially bulky dibenzobarrelene groups: synthesis, characterization and olefin polymerization studies. <i>Polymer Chemistry</i> , 2020 , 11, 6783	3 - 6993	15
178	Rapid Detection and Enumeration of Exoelectrogenic Bacteria in Lake Sediments and a Wastewater Treatment Plant Using a Coupled WO3 Nanoclusters and Most Probable Number Method. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 133-137	11	15
177	Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans. <i>Chemosphere</i> , 2016 , 157, 65-70	8.4	15
176	Photocatalytic degradation of tetracycline by metal-organic frameworks modified with BiWO nanosheet under direct sunlight. <i>Chemosphere</i> , 2021 , 284, 131386	8.4	15
175	Quantitative Simulation of the Granulation Process of Activated Sludge for Wastewater Treatment. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 2864-2873	3.9	14
174	Spatiotemporal Organization of Biofilm Matrix Revealed by Confocal Raman Mapping Integrated with Non-negative Matrix Factorization Analysis. <i>Analytical Chemistry</i> , 2020 , 92, 707-715	7.8	14
173	Probing Membrane Fouling via Infrared Attenuated Total Reflection Mapping Coupled with Multivariate Curve Resolution. <i>ChemPhysChem</i> , 2016 , 17, 358-63	3.2	14
172	Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 10791-10801	5.7	14
171	Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. <i>Waste Management</i> , 2018 , 78, 310-317	8.6	14

170	Metal Drganic Framework Supported Palladium Nanoparticles: Applications and Mechanisms. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1800557	3.1	13
169	An Integrated Solid-State pH Microelectrode Prepared Using Microfabrication. <i>Electrochimica Acta</i> , 2015 , 152, 6-12	6.7	13
168	Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122336	12.8	13
167	Precipitation of organic arsenic compounds and their degradation products during struvite formation. <i>Journal of Hazardous Materials</i> , 2016 , 317, 90-96	12.8	13
166	Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	13
165	Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata. <i>Applied Energy</i> , 2014 , 133, 121-126	10.7	13
164	Simultaneous carbon and nitrogen removals in membrane bioreactor with mesh filter: An experimental and modeling approach. <i>Chemical Engineering Science</i> , 2013 , 95, 78-84	4.4	13
163	Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. <i>Analyst, The</i> , 2016 , 141, 6061-6067	5	13
162	Framework of Cytochrome/Vitamin B Linker/Graphene for Robust Microbial Electricity Generation. <i>ACS Applied Materials & Discourted Materials & Discourt & Discourt Materials & Discourt Materials & Discourt & Discou</i>	9.5	13
161	Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 4494-4505	5.1	12
160	Biogenic Quantum Dots for Sensitive, Label-Free Detection of Mercury Ions <i>ACS Applied Bio Materials</i> , 2019 , 2, 2661-2667	4.1	12
159	Solubilization of Waste Activated Sludge and Nitrogenous Compounds Transformation During Solubilization by Thermophilic Enzyme (S-TE) Process. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 176, 700-11	3.2	12
158	Performance and Mechanism of Potassium Ferrate(VI) Enhancing Dark Fermentative Hydrogen Accumulation from Waste Activated Sludge. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8681-8	3693	12
157	Non-Enzymatic Electrochemical Detection of Glucose with a Gold Nanowire Array Electrode. <i>Electroanalysis</i> , 2014 , 26, 656-663	3	12
156	Efficiently reducing the plant growth inhibition of CuO NPs using rice husk-derived biochar: experimental demonstration and mechanism investigation. <i>Environmental Science: Nano</i> , 2017 , 4, 1722-	1732	12
155	Optimization of Radiolytic Degradation of Poly(vinyl alcohol). <i>Industrial & Degramation of Regineering Chemistry Research</i> , 2005 , 44, 1995-2001	3.9	12
154	Optimization of volatile fatty acid compositions for hydrogen production by Rhodopseudomonas capsulata. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 1198-1203	3.5	12
153	Solar-energy-facilitated CdSxSe1N quantum dot bio-assembly in Escherichia coli and Tetrahymena pyriformis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6205-6212	13	12

152	Interfacial Electron Transfer from the Outer Membrane Cytochrome OmcA to Graphene Oxide in a Microbial Fuel Cell: Spectral and Electrochemical Insights. <i>ACS Energy Letters</i> , 2018 , 3, 2449-2456	20.1	12
151	Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	11
150	Photochemical Protection of Reactive Sites on Defective TiO Surface for Electrochemical Water Treatment. <i>Environmental Science & Environmental Scienc</i>	10.3	11
149	Selenium Stimulates Cadmium Detoxification in Caenorhabditis elegans through Thiols-Mediated Nanoparticles Formation and Secretion. <i>Environmental Science & Environmental Sci</i>	10.3	11
148	Understanding the Microbial Internal Storage Turnover in Wastewater Treatment: Retrospect, Prospect, and Challenge. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 591-612	11.1	11
147	Boiling significantly promotes photodegradation of perfluorooctane sulfonate. <i>Chemosphere</i> , 2015 , 138, 324-7	8.4	11
146	LCST-Type Hyperbranched Poly(oligo(ethylene glycol) with Thermo- and CO -Responsive Backbone. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700684	4.8	11
145	Respiration adaptation of activated sludge under dissolved oxygen and hypochlorite stressed conditions. <i>Bioresource Technology</i> , 2018 , 248, 171-178	11	11
144	Acid-stimulated bioassembly of high-performance quantum dots in Escherichia coli. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18480-18487	13	11
143	Silica Removal Using Magnetic Iron-Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 13302-13311	10.3	11
142	Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions. <i>RSC Advances</i> , 2016 , 6, 86165-86173	3.7	11
141	Sensing and Approaching Toxic Arsenate by CN-32. <i>Environmental Science & Environmental Science & Envi</i>	10.3	11
140	Simultaneous evaluation of bioactivity and settleability of activated sludge using fractal dimension as an intermediate variable. <i>Water Research</i> , 2020 , 178, 115834	12.5	11
139	Fine tuning of phosphorus active sites on g-C3N4 nanosheets for enhanced photocatalytic decontamination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10933-10944	13	11
138	Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. <i>Chemosphere</i> , 2021 , 278, 130508	8.4	11
137	A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. <i>Bioresource Technology</i> , 2017 , 241, 743-749	11	10
136	Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 238	9 ⁴ 2 ⁹ 400) 10
135	Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 531-538	5.8	10

134	Fluorescence dynamics of the biosynthesized CdSe quantum dots in Candida utilis. <i>Scientific Reports</i> , 2017 , 7, 2048	4.9	10
133	An MFC-based online monitoring and alert system for activated sludge process. <i>Scientific Reports</i> , 2014 , 4, 6779	4.9	10
132	How Does Chitosan Affect Methane Production in Anaerobic Digestion?. <i>Environmental Science & Environmental Science</i>	10.3	10
131	Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge. <i>Science of the Total Environment</i> , 2020 , 704, 135849	10.2	10
130	In situ organic Fenton-like catalysis triggered by anodic polymeric intermediates for electrochemical water purification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30966-30972	11.5	10
129	Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. <i>Current Opinion in Chemical Biology</i> , 2020 , 59, 104-110	9.7	10
128	Potential regulates metabolism and extracellular respiration of electroactive Geobacter biofilm. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 961-971	4.9	9
127	Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. <i>Chemosphere</i> , 2019 , 235, 814-824	8.4	9
126	Difference of respiration-based approaches for quantifying heterotrophic biomass in activated sludge of biological wastewater treatment plants. <i>Science of the Total Environment</i> , 2019 , 664, 45-52	10.2	9
125	Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 897-904	5.8	9
124	A simple respirogram-based approach for the management of effluent from an activated sludge system. <i>Bioresource Technology</i> , 2018 , 261, 412-419	11	9
123	Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions. <i>Bioresource Technology</i> , 2018 , 248, 148-155	11	9
122	Diagnosis of the unexpected fluorescent contaminants in quantifying dissolved organic matter using excitation-emission matrix fluorescence spectroscopy. <i>Water Research</i> , 2019 , 163, 114873	12.5	9
121	A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	9
120	Capacity limit of simultaneous temporal processing: how many concurrent RlocksRin vision?. <i>PLoS ONE</i> , 2014 , 9, e91797	3.7	9
119	Design, Preparation, and Characterization of a Novel Hyper-Cross-Linked Polyphosphamide Polymer and Its Adsorption for Phenol. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1161	4 ³ 1 ⁹ 161	199
118	Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant. <i>AICHE Journal</i> , 2009 , 55, 2186-2196	3.6	9
117	Development of a mechanistic model for biological nutrient removal activated sludge systems and application to a full-scale WWTP. <i>AICHE Journal</i> , 2010 , 56, 1626-1638	3.6	9

116	The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. <i>Bioresource Technology</i> , 2020 , 297, 122428	11	9
115	Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. <i>ACS Applied Materials & Enhancing</i> 13, 18743-18749	9.5	9
114	Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers. <i>Science of the Total Environment</i> , 2018 , 637-638, 926-933	10.2	9
113	Approaching the binding between Cu(II) and aerobic granules by a modified titration and $\bar{\mu}$ -XRF. Frontiers of Environmental Science and Engineering, 2016 , 10, 362-367	5.8	8
112	Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	8
111	Biological perchlorate reduction: which electron donor we can choose?. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 16906-16922	5.1	8
110	Lipase-catalyzed regioselective domino reaction for the synthesis of chromenone derivatives. <i>RSC Advances</i> , 2015 , 5, 78927-78932	3.7	8
109	Probing Microbial Extracellular Respiration Ability Using Riboflavin. <i>Analytical Chemistry</i> , 2020 , 92, 1060	9 5 -806	18
108	A Pt-Bi bimetallic nanoparticle catalyst for direct electrooxidation of formic acid in fuel cells. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 388-394	5.8	8
107	Quantitative analysis and fingerprint profiles for quality control of Fructus Schisandrae by gas chromatography: mass spectrometry. <i>Scientific World Journal, The</i> , 2014 , 2014, 806759	2.2	8
106	pH-Dependent Interactions Between Lead and Typha angustifolia Biomass in the Biosorption Process. <i>Industrial & Dependent Manual Chemistry Research</i> , 2011 , 50, 5920-5926	3.9	8
105	Experimental and numerical analysis of the hydrodynamic behaviors of aerobic granules. <i>AICHE Journal</i> , 2011 , 57, 2909-2916	3.6	8
104	Phosphorus Recovery from Wastewater Prominently through a Fe(II)-P Oxidizing Pathway in the Autotrophic Iron-Dependent Denitrification Process. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
103	Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 23001-23010	11.5	8
102	Interface-Promoted Direct Oxidation of -Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
101	Synthesis of CdSSe quantum dots in a protozoa Tetrahymena pyriformis. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 973-980	5.7	8
100	Understanding the interaction between triclocarban and denitrifiers. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123343	12.8	8
99	Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. <i>Science of the Total Environment</i> , 2021 , 794, 148765	10.2	8

(2021-2020)

98	Stable Electrochemical Determination of Dopamine by a Fluorine-Terminated {001}-Exposed TiO Single Crystal Sensor. <i>Analytical Chemistry</i> , 2020 , 92, 9629-9639	7.8	7
97	Purification and molecular weight distribution of a key exopolysaccharide component of Bacillus megaterium TF10. <i>Journal of Environmental Sciences</i> , 2018 , 63, 9-15	6.4	7
96	Fluorescence quenching effects of antibiotics on the main components of dissolved organic matter. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 5667-75	5.1	7
95	Spectral insights into the transformation and distribution of CdSe quantum dots in microorganisms during food-chain transport. <i>Scientific Reports</i> , 2017 , 7, 4370	4.9	7
94	The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination. <i>Scientific Reports</i> , 2014 , 4, 5239	4.9	7
93	Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography. <i>Pharmacognosy Magazine</i> , 2014 , 10, 292-303	0.8	7
92	Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 134, 110134	16.2	7
91	Multi-hydrolytic enzyme accumulation and microbial community structure of anaerobic co-digestion of food waste and waste-activated sludge. <i>Environmental Technology (United Kingdom)</i> , 2020 , 41, 478-487	2.6	7
90	Ultrafine and Well-Dispersed Nickel Nanoparticles with Hierarchical Structure for Catalytically Breaking a Boron⊞ydrogen Bond. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6800-6807	5.6	7
89	2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. <i>Chemosphere</i> , 2022 , 287, 132061	8.4	7
88	Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems. <i>Environmental Pollution</i> , 2019 , 249, 794-800	9.3	6
87	Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions. <i>Environmental Pollution</i> , 2015 , 207, 123-9	9.3	6
86	Probing protein-induced membrane fouling with in-situ attenuated total reflectance fourier transform infrared spectroscopy and multivariate curve resolution-alternating least squares. <i>Water Research</i> , 2020 , 183, 116052	12.5	6
85	Modification of forward osmosis membrane with naturally-available humic acid: Towards simultaneously improved filtration performance and antifouling properties. <i>Environment International</i> , 2019 , 131, 105045	12.9	6
84	Kinetic analysis on gaseous and aqueous product formation by mixed anaerobic hydrogen-producing cultures. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 15590-15597	6.7	6
83	Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 302, 120845	21.8	6
82	Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123611	12.8	6
81	TiO photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction. <i>Science of the Total Environment</i> , 2021 , 760, 144040	10.2	6

80	Cation-linduced surface cleavage of organic pollutants with OH formation from HO for water treatment. <i>IScience</i> , 2021 , 24, 102874	6.1	6
79	Selective co-production of acetate and methane from wastewater during mesophilic anaerobic fermentation under acidic conditions. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 720-725	4.2	5
78	Impacts of environmental factors on AHL-producing and AHL-quenching activities of aerobic granules. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 9181-9189	5.7	5
77	Microbial hydrogen production from phenol in a two-step biological process. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 12627-12633	6.7	5
76	A highly-ordered and uniform sunflower-like dendritic silver nanocomplex array as reproducible SERS substrate. <i>RSC Advances</i> , 2015 , 5, 3860-3867	3.7	5
75	Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. <i>Biosensors and Bioelectronics</i> , 2020 , 156, 112136	11.8	5
74	The feasibility of enhanced biological phosphorus removal in the novel oxic/extended idle process using fermentation liquid from sludge fermentation <i>RSC Advances</i> , 2018 , 8, 3321-3327	3.7	5
73	Controlling CO -Responsive Behaviors of Polymersomes Self-Assembled by Coumarin-Containing Star Polymer via Regulating Its Crosslinking Pattern. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800009	4.8	5
72	Phosphate-Suppressed Selenite Biotransformation by. <i>Environmental Science & Environmental Science & E</i>	10.3	5
71	Probing operational conditions of mixing and oxygen deficiency using HSV color space. <i>Journal of Environmental Management</i> , 2019 , 232, 985-992	7.9	5
70	Tuning of activated sludge in winter based on respirogram profiles under standard and site temperatures. <i>Journal of Environmental Sciences</i> , 2019 , 79, 330-338	6.4	5
69	Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress. <i>Analyst, The</i> , 2020 , 145, 3922-3930	5	5
68	Longer persistence of quorum quenching bacteria over quorum sensing bacteria in aerobic granules. <i>Water Research</i> , 2020 , 179, 115904	12.5	4
67	Evaluation of robustness of activated sludge using calcium-induced enhancement of respiration. <i>Bioresource Technology</i> , 2018 , 253, 55-63	11	4
66	Chemical imaging of fresh vascular smooth muscle cell response by epi-detected stimulated Raman scattering. <i>Journal of Biophotonics</i> , 2018 , 11, e201700005	3.1	4
65	A gold microarray electrode on a poly(methylmethacrylate) substrate to improve the performance of microbial fuel cells by modifying biofilm formation. <i>RSC Advances</i> , 2016 , 6, 114937-114943	3.7	4
64	Solar-Driven Synchronous Photoelectrochemical Sulfur Recovery and Pollutant Degradation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9591-9595	8.3	4
63	Hierarchical H-MOR Zeolite Supported Vanadium Oxide for Dimethyl Ether Direct Oxidation. <i>Catalysts</i> , 2019 , 9, 628	4	4

62	Probing electron transfer between hemin and riboflavin using a combination of analytical approaches and theoretical calculations. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 32580-32588	3.6	4	
61	Anaerobic Granule Technologies for Hydrogen Recovery from Wastes: The Way Forward. <i>Critical Reviews in Environmental Science and Technology</i> , 2013 , 43, 1246-1280	11.1	4	
60	Contact-Adsorption-Regeneration-Stabilization Process for the Treatment of Municipal Wastewater. <i>Journal of Water and Environment Technology</i> , 2009 , 7, 83-90	1.1	4	
59	Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 2358-23	65	4	
58	Peroxymonosulfate (PMS) activation by mackinawite for the degradation of organic pollutants: Underappreciated role of dissolved sulfur derivatives. <i>Science of the Total Environment</i> , 2021 , 811, 1514	121 ^{0.2}	4	
57	Efficiency of sequential UV/HO and biofilm process for the treatment of secondary effluent. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 577-585	5.1	4	
56	Intracellular polymers production in anaerobic sludge under salt shock and batch fermentation conditions: Experimental and modelling study. <i>Biochemical Engineering Journal</i> , 2019 , 142, 68-73	4.2	4	
55	Anaerobic reduction of high-polarity nitroaromatic compounds by electrochemically active bacteria: Roles of Mtr respiratory pathway, molecular polarity, mediator and membrane permeability. <i>Environmental Pollution</i> , 2021 , 268, 115943	9.3	4	
54	Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria. <i>Environmental Microbiology</i> , 2021 , 23, 1238-1255	5.2	4	
53	Density Functional Theory Investigation into the Effects of Dissolved Organic Matter on H2O2 Activation over Fe2O3 (001) Surfaces. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 8508-8517	3.8	4	
52	Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. <i>Science of the Total Environment</i> , 2021 , 780, 146662	10.2	4	
51	In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. <i>Journal of Hazardous Materials</i> , 2021 , 419, 126389	12.8	4	
50	Sulfate radical-mediated degradation of phenol and methylene blue by manganese oxide octahedral molecular sieve (OMS-2) activation of peroxymonosulfate. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 12963-12974	5.1	3	
49	Near-infrared spectroscopy-based quantification of substrate and aqueous products in wastewater anaerobic fermentation processes. <i>Science Bulletin</i> , 2009 , 54, 1918-1922	10.6	3	
48	Thickness-Dependence of Surface Reconstruction on the (001) Surface of Ultrathin Silicon Nanosheets by Density Functional Tight Binding Simulations. <i>Science of Advanced Materials</i> , 2021 , 13, 387-397	2.3	3	
47	Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor. <i>Chemosphere</i> , 2021 , 264, 128548	8.4	3	
46	Iron Cycle Tuned by Outer-Membrane Cytochromes of Dissimilatory Metal-Reducing Bacteria: Interfacial Dynamics and Mechanisms In Vitro. <i>Environmental Science & Environmental </i>	10.3	3	
45	Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). <i>International Journal of Oncology</i> , 2021 , 59,	4.4	3	

44	In-situ regeneration of tetracycline-saturated hierarchical porous carbon by peroxydisulfate oxidation process: Performance, mechanism and application. <i>Chemical Engineering Journal</i> , 2022 , 427, 131749	14.7	3
43	Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. <i>Science of the Total Environment</i> , 2022 , 806, 150347	10.2	3
42	Multiparameter optimization of bromate sorption on anion exchange resin by a two-step statistical strategy: PlackettBurman and BoxBehnken experimental design. <i>Desalination and Water Treatment</i> , 2016 , 57, 15524-15532		2
41	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. <i>Process Biochemistry</i> , 2020 , 95, 108-114	4.8	2
40	An interneuron progenitor maintains neurogenic potential in vivo and differentiates into GABAergic interneurons after transplantation in the postnatal rat brain. <i>Scientific Reports</i> , 2016 , 6, 190	0 3 ·9	2
39	Equilibrium, kinetics and thermodynamics of Cu(II) biosorption on Chinese chestnut shell pretreated with steam explosion. <i>Water Science and Technology</i> , 2018 , 78, 868-877	2.2	2
38	A Novel Integrated Approach to the Enhanced Production of Polyhydrobutyrate with Mixed Culture in Activated Sludge. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7478-7483	3.9	2
37	A thermodynamic analysis of the activated sludge process: Application to soybean wastewater treatment in a sequencing batch reactor. <i>AICHE Journal</i> , 2009 , 55, 2737-2745	3.6	2
36	Surface characteristics of acidogenic sludge in H2-producing process. <i>Journal of Water and Environment Technology</i> , 2007 , 5, 1-12	1.1	2
35	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. <i>Environmental Microbiology</i> , 2021 ,	5.2	2
34	Engineering a Rhamnose-Inducible System to Enhance the Extracellular Electron Transfer Ability of Shewanella Genus for Improved Cr(VI) Reduction. <i>ACS ES&T Engineering</i> , 2021 , 1, 842-850		2
33	Roles of cation efflux pump in biomineralization of cadmium into quantum dots in Escherichia coli. <i>Journal of Hazardous Materials</i> , 2021 , 412, 125248	12.8	2
32	Tonalide facilitates methane production from anaerobic digestion of waste activated sludge. <i>Science of the Total Environment</i> , 2021 , 779, 146195	10.2	2
31	Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate. <i>Bioresource Technology</i> , 2021 , 336, 125321	11	2
30	Unexpected alleviation of transparent exopolymer particles-associated membrane fouling through interaction with typical organic foulants. <i>Journal of Membrane Science</i> , 2021 , 636, 119554	9.6	2
29	Enhancing Fenton-like catalytic efficiency of Bi2WO6 by iodine doping for pollutant degradation. Separation and Purification Technology, 2021 , 277, 119447	8.3	2
28	A new polystyrene-latex-based and EPS-containing synthetic sludge. <i>Frontiers of Environmental Science and Engineering</i> , 2012 , 6, 131-139	5.8	1
27	Optimizing and Modeling the Anaerobic Digestion of Lignocellulosic Wastes by Rumen Cultures 2012 , 259-289		1

26	Comparison between inhibitor and uncoupler for minimizing excess sludge production of an activated sludge process. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 63-66		1
25	Sequential Assembly Tailored Interior of Porous Carbon Spheres for Boosted Water Decontamination through Peroxymonosulfate Activation. <i>Advanced Functional Materials</i> ,2111184	15.6	1
24	Nondestructive 3D imaging and quantification of hydrated biofilm matrix by confocal Raman microscopy coupled with non-negative matrix factorization <i>Water Research</i> , 2021 , 210, 117973	12.5	1
23	Efficient Conversion of the Lignocellulosic Biomass Waste into 5-Hydroxymethylfurfural-Enriched Bio-Oil and Co Nanoparticle-Functionalized Biochar. <i>ACS ES&T Engineering</i> , 2021 , 1, 895-904		1
22	Determination of Saccharides in Environments Using a Sulfuric Acid-Fluorescence Approach. <i>Environmental Science & Environmental Science & Environment</i>	10.3	1
21	Enhanced Bioreduction of Radionuclides by Driving Microbial Extracellular Electron Pumping with an Engineered CRISPR Platform. <i>Environmental Science & Engineered CRISPR Platform</i> . <i>Environmental Science & Environmental Sc</i>	10.3	1
20	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structure-Dependent Catalytic Performance. <i>Advanced Materials</i> , 2021 , 33, e2103130	24	1
19	Adopting vibration to alleviate the solute buildup and membrane fouling in a forward osmosis system. <i>Journal of Cleaner Production</i> , 2021 , 129202	10.3	1
18	Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria <i>Environmental Microbiology</i> , 2022 ,	5.2	1
17	Reusing Sulfur-Poisoned Palladium Waste as a Highly Active, Nonradical Fenton-like Catalyst for Selective Degradation of Phenolic Pollutants <i>Environmental Science & Environmental Science & Enviro</i>	10.3	1
16	Pb(II) Adsorption by Nano-Goethite Loaded with Chestnut Shell Pigment. <i>Emerging Materials Research</i> , 2020 , 9, 1-10	1.4	O
15	Evaluating the effect of diclofenac on hydrogen production by anaerobic fermentation of waste activated sludge <i>Journal of Environmental Management</i> , 2022 , 308, 114641	7.9	O
14	Intracellular Hybrid Biosystem in a Protozoan to Trigger Visible-Light-Driven Photocatalysis. <i>ACS Applied Materials & Drotozoan Mat</i>	9.5	0
13	Plate-Based Kinetic Fluorescence Tests for High-Throughput Screening of Electrochemically Active Bacteria. <i>ACS ES&T Water</i> , 2021 , 1, 2139-2145		O
12	Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 4760-4770	4.9	O
11	Systematically assessing genetic strategies for engineering electroactive bacterium to promote bioelectrochemical performances and pollutant removal. <i>Sustainable Energy Technologies and Assessments</i> , 2021 , 47, 101506	4.7	O
10	Zirconium-modified biochar as the efficient adsorbent for low-concentration phosphate: performance and mechanism <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	О
9	In-situ quantitative monitoring the organic contaminants uptake onto suspended microplastics in aquatic environments <i>Water Research</i> , 2022 , 215, 118235	12.5	O

8	of Environmental Management, 2022 , 309, 114728	'.9	О
7	Thermochemical Conversion of Lignocellulosic Biomass into Mass-Producible Fuels: Emerging Technology Progress and Environmental Sustainability Evaluation. <i>ACS Environmental Au</i> , 2022 , 2, 98-114		О
6	Sulfide enhances the Fe(II)/Fe(III) cycle in Fe(III)-peroxymonosulfate system for rapid removal of organic contaminants: Treatment efficiency, kinetics and mechanism <i>Journal of Hazardous</i> **Materials**, 2022 , 435, 128970	2.8	О
5	Semi-quantitative probing of reactive oxygen species in persulfate-based heterogeneous catalytic oxidation systems for elucidating the reaction mechanism. <i>Chemical Engineering Journal</i> , 2022 , 446, 137 $\frac{2}{2}$	1 7	О
4	Cu(II), Ni(II) Complexation with Acid Alizarine Blue B in the Presence of Cetyltrimethylammonium Bromide. <i>Chinese Journal of Chemical Physics</i> , 2006 , 19, 178-182).9	
3	Aerobic Granular Sludge Technology for Wastewater Treatment429-463		
2	Microbial electrochemical production of energy and value-added chemicals from agri-food wastewater 2020 , 355-372		

Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. *Inorganic Chemistry*, **2020**, 59, 10620-10627