Han-Qing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/118487/publications.pdf

Version: 2024-02-01

669 papers 55,455 citations

118 h-index 193 g-index

681 all docs

681 docs citations

681 times ranked

38839 citing authors

#	Article	IF	CITATIONS
1	Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 2010, 28, 882-894.	11.7	2,305
2	Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14, 651-662.	28.6	1,224
3	Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 2015, 115, 12251-12285.	47.7	1,149
4	Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 200, 330-342.	20.2	752
5	Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy and Environmental Science, 2014, 7, 911-924.	30.8	746
6	Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn _{1.8} Fe _{1.2} O ₄ Nanospheres: Synergism between Mn and Fe. Environmental Science & Samp; Technology, 2017, 51, 12611-12618.	10.0	664
7	Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 2006, 40, 1233-1239.	11.3	629
8	Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology and Medicine, 2007, 42, 1524-1533.	2.9	592
9	Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. Journal of Colloid and Interface Science, 2018, 519, 273-284.	9.4	552
10	Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 2012, 121, 235-240.	9.6	520
11	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	30.8	481
12	Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry, 2015, 17, 4888-4907.	9.0	437
13	Enhanced Photocatalytic Degradation of Tetracycline by Agl/BiVO ₄ Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Applied Materials & Amp; Interfaces, 2016, 8, 32887-32900.	8.0	407
14	Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chemical Engineering Journal, 2019, 378, 122149.	12.7	401
15	Fates of Chemical Elements in Biomass during Its Pyrolysis. Chemical Reviews, 2017, 117, 6367-6398.	47.7	399
16	FTIR and Synchronous Fluorescence Heterospectral Two-Dimensional Correlation Analyses on the Binding Characteristics of Copper onto Dissolved Organic Matter. Environmental Science & Emp; Technology, 2015, 49, 2052-2058.	10.0	389
17	Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. International Journal of Hydrogen Energy, 2002, 27, 1359-1365.	7.1	383
18	Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation. Environmental Science & Eps. Technology, 2010, 44, 4355-4360.	10.0	378

#	Article	IF	Citations
19	Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Applied Catalysis B: Environmental, 2017, 205, 133-147.	20.2	343
20	Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. ACS Catalysis, 2018, 8, 5533-5541.	11.2	340
21	Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miRâ€23aâ€3p and Upâ€regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology, 2019, 70, 241-258.	7.3	304
22	Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 2018, 247, 537-544.	9.6	297
23	Chemistry: Reuse water pollutants. Nature, 2015, 528, 29-31.	27.8	296
24	Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Research, 2013, 47, 607-614.	11.3	289
25	Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Applied Catalysis B: Environmental, 2018, 221, 320-328.	20.2	287
26	Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. Journal of Materials Chemistry A, 2018, 6, 8978-8985.	10.3	285
27	Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nature Communications, 2020, $11,265$.	12.8	280
28	Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism. Water Research, 2020, 173, 115559.	11.3	270
29	Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Research, 2013, 47, 5298-5306.	11.3	264
30	Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nature Communications, 2015, 6, 8696.	12.8	263
31	Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresource Technology, 2014, 160, 15-23.	9.6	260
32	Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Research, 2021, 191, 116799.	11.3	259
33	Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Research, 2009, 43, 751-761.	11.3	258
34	Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Research, 2012, 46, 1817-1824.	11.3	254
35	Formation and Characterization of Aerobic Granules in a Sequencing Batch Reactor Treating Soybean-Processing Wastewater. Environmental Science & Envir	10.0	249
36	Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by <i>Bacillus megaterium</i> TF10 for Their Flocculation Capacity. Environmental Science & Emp; Technology, 2011, 45, 1152-1157.	10.0	248

#	Article	IF	Citations
37	A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 2016, 316, 11-18.	12.4	241
38	Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 2017, 241, 1127-1137.	9.6	234
39	Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Research, 2019, 151, 1-7.	11.3	228
40	Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Research, 2011, 45, 5633-5640.	11.3	226
41	pH Dependence of Structure and Surface Properties of Microbial EPS. Environmental Science & Science & Technology, 2012, 46, 737-744.	10.0	225
42	Investigation on the Evolution of N-Containing Organic Compounds during Pyrolysis of Sewage Sludge. Environmental Science & En	10.0	223
43	Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Research, 2013, 47, 2643-2648.	11.3	222
44	Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 2017, 111, 204-212.	11.3	219
45	Molecular Insights into Extracellular Polymeric Substances in Activated Sludge. Environmental Science & Environmental Science	10.0	213
46	Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight. Environmental Pollution, 2018, 233, 1-7.	7.5	211
47	Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 2010, 101, 2924-2930.	9.6	210
48	Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chemical Society Reviews, 2014, 43, 7718-7745.	38.1	208
49	Visibleâ€Lightâ€Promoted Asymmetric Crossâ€Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3694-3698.	13.8	208
50	Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgCl ₂ Preloaded Waste Biomass for Highly Efficient CO ₂ Capture. Environmental Science & Technology, 2013, 47, 9397-9403.	10.0	204
51	Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 2012, 46, 799-807.	11.3	203
52	Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Research, 2015, 70, 1-8.	11.3	201
53	Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science & Emp; Technology, 2016, 50, 3882-3889.	10.0	199
54	Synthesis of a Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7766-7772.	8.0	196

#	Article	IF	CITATIONS
55	Physicochemical characteristics of microbial granules. Biotechnology Advances, 2009, 27, 1061-1070.	11.7	195
56	An MEC-MFC-Coupled System for Biohydrogen Production from Acetate. Environmental Science & Emp; Technology, 2008, 42, 8095-8100.	10.0	193
57	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	17.4	192
58	Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Research, 2015, 78, 111-120.	11.3	189
59	Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge. Water Research, 2019, 148, 239-249.	11.3	188
60	A Fenton-like process for the enhanced activated sludge dewatering. Chemical Engineering Journal, 2015, 272, 128-134.	12.7	186
61	Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chemical Society Reviews, 2016, 45, 2847-2870.	38.1	186
62	Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology, 2005, 67, 125-130.	3.6	185
63	Soluble microbial products and their implications in mixed culture biotechnology. Trends in Biotechnology, 2011, 29, 454-463.	9.3	184
64	The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2019, 164, 114934.	11.3	184
65	Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology and Biotechnology, 2005, 69, 216-222.	3.6	180
66	Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation. Bioresource Technology, 2016, 206, 134-140.	9.6	179
67	Porous ZnO-Coated Co ₃ O ₄ Nanorod as a High-Energy-Density Supercapacitor Material. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23163-23173.	8.0	177
68	Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: Role of surface- and structure-dependent properties. Journal of Hazardous Materials, 2013, 260, 498-507.	12.4	174
69	Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Scientific Reports, 2014, 4, 3735.	3.3	174
70	High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environmental Science & Science & Technology, 2014, 48, 13951-13959.	10.0	173
71	Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Research, 2016, 101, 555-563.	11.3	170
72	Bi24O31Br10 nanosheets with controllable thickness for visible–light–driven catalytic degradation of tetracycline hydrochloride. Applied Catalysis B: Environmental, 2017, 205, 615-623.	20.2	169

#	Article	IF	CITATIONS
73	Phosphorus Removal in an Enhanced Biological Phosphorus Removal Process: Roles of Extracellular Polymeric Substances. Environmental Science & Environmental Science & 2013, 47, 11482-11489.	10.0	167
74	Two-Dimensional Correlation Spectroscopic Analysis on the Interaction between Humic Acids and TiO ₂ Nanoparticles. Environmental Science & E	10.0	166
75	Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016, 27, 526-534.	16.0	166
76	Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation–emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research, 2009, 43, 1350-1358.	11.3	163
77	Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environmental Science & Environmental Sci	10.0	163
78	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018, 133, 272-281.	11.3	163
79	Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 2010, 44, 5014-5020.	11.3	161
80	Novel Bi ₁₂ O ₁₅ Cl ₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5320-5326.	8.0	161
81	Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Research, 2019, 155, 142-151.	11.3	159
82	Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation. Applied Catalysis B: Environmental, 2017, 209, 493-505.	20.2	158
83	Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnology Advances, 2015, 33, 1-12.	11.7	157
84	Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research, 2017, 124, 269-279.	11.3	157
85	Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 2018, 130, 281-290.	11.3	156
86	Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Research, 2009, 43, 5267-5275.	11.3	153
87	A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy, 2012, 98, 230-235.	10.1	153
88	Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. Organic Letters, 2017, 19, 2122-2125.	4.6	153
89	Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40, 947-953.	3.2	151
90	Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge. Colloids and Surfaces B: Biointerfaces, 2008, 62, 83-90.	5.0	151

#	Article	IF	CITATIONS
91	Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. Science of the Total Environment, 2019, 663, 453-464.	8.0	151
92	Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis. Environmental Science & Environmental Science & 2019, 53, 4683-4694.	10.0	151
93	Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology, 2006, 97, 1302-1307.	9.6	150
94	Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Research, 2008, 42, 3343-3352.	11.3	150
95	Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Research, 2017, 127, 150-161.	11.3	150
96	Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Applied Catalysis B: Environmental, 2016, 195, 69-76.	20.2	142
97	Enhancing Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environmental Science & Echnology, 2017, 51, 5082-5089.	10.0	141
98	Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. Journal of Environmental Management, 2019, 231, 370-379.	7.8	140
99	A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2010, 26, 338-343.	10.1	139
100	Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Research, 2010, 44, 5298-5305.	11.3	138
101	Selectively Improving the Bio-Oil Quality by Catalytic Fast Pyrolysis of Heavy-Metal-Polluted Biomass: Take Copper (Cu) as an Example. Environmental Science & Technology, 2012, 46, 7849-7856.	10.0	138
102	A kinetic approach to anaerobic hydrogen-producing process. Water Research, 2007, 41, 1152-1160.	11.3	137
103	Microbe-Assisted Sulfide Oxidation in the Anode of a Microbial Fuel Cell. Environmental Science & Environmental Science & Technology, 2009, 43, 3372-3377.	10.0	137
104	An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere, 2016, 144, 160-167.	8.2	137
105	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	11.3	137
106	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-733.	11.3	136
107	Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chemistry, 2014, 16, 4198.	9.0	135
108	Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2006, 137, 498-508.	12.4	134

#	Article	IF	Citations
109	Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts. Applied Catalysis B: Environmental, 2017, 200, 659-665.	20.2	134
110	Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	132
111	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	3.1	131
112	Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, The, 2015, 140, 765-770.	3.5	128
113	Stability of sludge flocs under shear conditions: Roles of extracellular polymeric substances (EPS). Biotechnology and Bioengineering, 2006, 93, 1095-1102.	3.3	127
114	From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 2011, 29, 972-982.	11.7	125
115	Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. Journal of Hazardous Materials, 2009, 171, 780-785.	12.4	124
116	Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 2020, 3, 753-760.	23.7	124
117	Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 2017, 67, 308-314.	7.4	123
118	Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology, 2006, 38, 905-913.	3.2	121
119	Effects of temperature and substrate concentration on biological hydrogen production from starch. International Journal of Hydrogen Energy, 2009, 34, 2558-2566.	7.1	121
120	Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Research, 2021, 193, 116881.	11.3	121
121	Fractionating soluble microbial products in the activated sludge process. Water Research, 2010, 44, 2292-2302.	11.3	120
122	Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535, 444-457.	9.4	120
123	Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnology and Bioengineering, 2006, 94, 980-987.	3.3	118
124	Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochimica Acta, 2014, 139, 137-144.	5.2	118
125	Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Applied Materials & Discrete Applied & Discrete	8.0	118
126	Kinetic analysis of an anaerobic filter treating soybean wastewater. Water Research, 1998, 32, 3341-3352.	11.3	117

#	Article	IF	Citations
127	Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. Bioresource Technology, 2017, 234, 456-465.	9.6	117
128	Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nature Communications, 2022, 13 , .	12.8	117
129	Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications, 2011, 47, 5795.	4.1	116
130	Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy and Environmental Science, 2011, 4, 1422.	30.8	116
131	Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. Chemosphere, 2015, 140, 12-17.	8.2	116
132	Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Research, 2008, 42, 3173-3181.	11.3	115
133	DLVO Approach to the Flocculability of a Photosynthetic H2-Producing Bacterium, Rhodopseudomonas acidophila. Environmental Science & Environmental Science & 2007, 41, 4620-4625.	10.0	114
134	Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environment International, 2019, 129, 273-278.	10.0	114
135	Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge. Chemosphere, 2013, 93, 1436-1441.	8.2	112
136	Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Research, 2017, 127, 32-40.	11.3	110
137	Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnology and Bioengineering, 2006, 94, 988-995.	3.3	109
138	Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO _{2â€"<i>x</i>} Single Crystals. Environmental Science & Environme	10.0	109
139	Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology, 2012, 93, 1769-1776.	3.6	107
140	Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nature Communications, 2013, 4, 2249.	12.8	107
141	Manipulating the hydrogen production from acetate in a microbial electrolysis cell–microbial fuel cell-coupled system. Journal of Power Sources, 2009, 191, 338-343.	7.8	105
142	Novel Biâ€Doped Amorphous SnO <i></i> Nanoshells for Efficient Electrochemical CO ₂ Reduction into Formate at Low Overpotentials. Advanced Materials, 2020, 32, e2002822.	21.0	104
143	Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Research, 2015, 86, 85-95.	11.3	103
144	In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling. Water Research, 2013, 47, 5794-5800.	11.3	102

#	Article	IF	Citations
145	Epitaxial facet junctions on TiO ₂ single crystals for efficient photocatalytic water splitting. Energy and Environmental Science, 2018, 11, 1444-1448.	30.8	102
146	Modeling a granuleâ€based anaerobic ammonium oxidizing (ANAMMOX) process. Biotechnology and Bioengineering, 2009, 103, 490-499.	3.3	101
147	A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36, 2773-2776.	7.1	101
148	A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies. Chemical Engineering Journal, 2021, 407, 127078.	12.7	101
149	Coagulation Kinetics of Humic Aggregates in Mono- and Di-Valent Electrolyte Solutions. Environmental Science & Environmental S	10.0	100
150	Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 574, 364-376.	9.4	100
151	Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Research, 2004, 38, 309-316.	11.3	99
152	Photoassisted Fenton Degradation of Polystyrene. Environmental Science & Environmental Science & Photoassisted Fenton Degradation of Polystyrene. Environmental Science & Envi	10.0	99
153	Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 2021, 188, 116539.	11.3	99
154	Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresource Technology, 2020, 299, 122686.	9.6	98
155	Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 2016, 6, 20491.	3.3	97
156	Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nature Communications, 2021, 12, 303.	12.8	97
157	Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Research, 2016, 106, 242-248.	11.3	96
158	Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochemical Engineering Journal, 2005, 23, 175-184.	3.6	95
159	Metal–Organic Framework Templated Pd@PdO–Co ₃ O ₄ Nanocubes as an Efficient Bifunctional Oxygen Electrocatalyst. Advanced Energy Materials, 2018, 8, 1702734.	19.5	95
160	Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. Water Research, 2019, 157, 191-200.	11.3	95
161	Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 2021, 189, 116645.	11.3	95
162	Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. International Journal of Hydrogen Energy, 2006, 31, 1641-1647.	7.1	94

#	Article	IF	CITATIONS
163	Probing the roles of Ca2+ and Mg2+ in humic acids-induced ultrafiltration membrane fouling using an integrated approach. Water Research, 2015, 81, 325-332.	11.3	94
164	Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon. Industrial & Engineering Chemistry Research, 2013, 52, 12574-12581.	3.7	93
165	Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. Science of the Total Environment, 2017, 586, 1162-1169.	8.0	93
166	Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Research, 2019, 153, 217-228.	11.3	93
167	Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochemical Engineering Journal, 2004, 21, 59-62.	3.6	92
168	Copper release from copper nanoparticles in the presence of natural organic matter. Water Research, 2015, 68, 12-23.	11.3	92
169	Revealing the Underlying Mechanisms of How Sodium Chloride Affects Short-Chain Fatty Acid Production from the Cofermentation of Waste Activated Sludge and Food Waste. ACS Sustainable Chemistry and Engineering, 2016, 4, 4675-4684.	6.7	92
170	Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. Journal of Catalysis, 2017, 352, 160-170.	6.2	92
171	Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid: Performance, mechanism, and implication. Bioresource Technology, 2019, 284, 456-465.	9.6	91
172	Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica) Tj ETQq0 0 0 rg	BT_/Overlo	ock 10 Tf 50 3
173	Exosomes from Melatonin Treated Hepatocellularcarcinoma Cells Alter the Immunosupression Status through STAT3 Pathway in Macrophages. International Journal of Biological Sciences, 2017, 13, 723-734.	6.4	90
174	A bio-photoelectrochemical cell with a MoS ₃ -modified silicon nanowire photocathode for hydrogen and electricity production. Energy and Environmental Science, 2014, 7, 3033-3039.	30.8	89
175	A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environmental Science and Pollution Research, 2019, 26, 13984-13998.	5.3	89
176	Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge. Water Research, 2020, 170, 115300.	11.3	89
177	Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reducedÂgraphene oxide nanohybrids with an optimized autoxidation process. Nano Energy, 2018, 43, 300-309.	16.0	88
178	Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge. Bioresource Technology, 2019, 275, 163-171.	9.6	88
179	Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. RSC Advances, 2014, 4, 21619-21624.	3.6	87
180	Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. Environmental Science & Environ	10.0	87

#	Article	IF	Citations
181	Hydrophilic swellable metal–organic framework encapsulated Pd nanoparticles as an efficient catalyst for Cr(<scp>vi</scp>) reduction. Journal of Materials Chemistry A, 2016, 4, 11680-11687.	10.3	86
182	Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Research, 2016, 92, 78-86.	11.3	86
183	Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics, 2012, 14, 1978.	2.8	85
184	High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nature Protocols, 2016, 11, 377-386.	12.0	85
185	Wastewater Opportunities for Denitrifying Anaerobic Methane Oxidation. Trends in Biotechnology, 2017, 35, 799-802.	9.3	85
186	Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresource Technology, 2018, 262, 114-123.	9.6	85
187	Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresource Technology, 2011, 102, 3471-3479.	9.6	83
188	Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. Journal of Hazardous Materials, 2016, 318, 460-467.	12.4	83
189	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. Bioresource Technology, 2017, 244, 920-928.	9.6	83
190	Molecular Spectroscopic Characterization of Membrane Fouling: A Critical Review. CheM, 2018, 4, 1492-1509.	11.7	83
191	Degradation of Organic Pollutants in a Photoelectrocatalytic System Enhanced by a Microbial Fuel Cell. Environmental Science & Echnology, 2010, 44, 5575-5580.	10.0	82
192	Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Scientific Reports, 2016, 6, 39098.	3.3	81
193	Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environment International, 2019, 129, 86-94.	10.0	81
194	Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Science Advances, 2020, 6, eaay0748.	10.3	81
195	Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection. Analytical Chemistry, 2020, 92, 3990-3997.	6.5	81
196	Electricity generation from mixed volatile fatty acids using microbial fuel cells. Applied Microbiology and Biotechnology, 2010, 87, 2365-2372.	3.6	80
197	Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. Water Research, 2012, 46, 3868-3878.	11.3	80
198	Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresource Technology, 2018, 254, 7-15.	9.6	80

#	Article	IF	Citations
199	Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Applied Catalysis B: Environmental, 2020, 268, 118405.	20.2	80
200	The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation. Applied Microbiology and Biotechnology, 2010, 88, 789-797.	3.6	79
201	Exclusive Extracellular Bioreduction of Methyl Orange by Azo Reductase-Free <i>Geobacter sulfurreducens</i> . Environmental Science & Echnology, 2017, 51, 8616-8623.	10.0	79
202	Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9120-9129.	6.7	79
203	Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin. Bioresource Technology, 2018, 254, 194-202.	9.6	79
204	Degradation of benzoic acid in an advanced oxidation process: The effects of reducing agents. Journal of Hazardous Materials, 2020, 382, 121090.	12.4	79
205	Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2-x nanosheets: Ultrafast charge transfer and molecular oxygen activation. Applied Catalysis B: Environmental, 2020, 277, 119218.	20.2	79
206	Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Applied Microbiology and Biotechnology, 2007, 75, 871-878.	3.6	78
207	Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015, 153, 63-69.	10.1	78
208	Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Scientific Reports, 2015, 5, 9353.	3.3	77
209	Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. Journal of Environmental Management, 2018, 227, 406-414.	7.8	77
210	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.	9.6	77
211	Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: Reaction kinetics and intrinsic mechanism. Chemical Engineering Journal, 2019, 355, 624-636.	12.7	77
212	Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Research, 2007, 41, 39-46.	11.3	76
213	A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe. Scientific Reports, 2013, 3, 1315.	3.3	76
214	A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). Journal of Environmental Sciences, 2021, 108, 201-216.	6.1	76
215	How Does Chitosan Affect Methane Production in Anaerobic Digestion?. Environmental Science & Emp; Technology, 2021, 55, 15843-15852.	10.0	76
216	PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon, 2006, 44, 2059-2068.	10.3	75

#	Article	IF	CITATIONS
217	Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber. Journal of Hazardous Materials, 2007, 144, 200-207.	12.4	75
218	Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Research, 2009, 43, 1247-1256.	11.3	75
219	Hydrophobic Teflon films as concentrators for single-molecule SERS detection. Journal of Materials Chemistry, 2012, 22, 20986.	6.7	7 5
220	Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1630-1635.	7.1	75
221	Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research, 2020, 169, 115249.	11.3	75
222	Mathematical modeling of aerobic granular sludge: A review. Biotechnology Advances, 2010, 28, 895-909.	11.7	74
223	Synthesis of Pt-Loaded Self-Interspersed Anatase TiO ₂ with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20349-20359.	8.0	74
224	Changing profiles of bound water content and distribution in the activated sludge treatment by NaCl addition and pH modification. Chemosphere, 2017, 186, 702-708.	8.2	74
225	Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight. Water Research, 2018, 145, 146-152.	11.3	74
226	Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Research, 2021, 190, 116759.	11.3	74
227	Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water Research, 2012, 46, 6210-6217.	11.3	73
228	Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Physical Chemistry Chemical Physics, 2012, 14, 9966.	2.8	73
229	Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresource Technology, 2017, 238, 343-351.	9.6	73
230	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14104-14113.	6.7	73
231	Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020, 169, 115264.	11.3	73
232	Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 2008, 42, 1583-1594.	11.3	72
233	Integration of a microbial fuel cell with activated sludge process for energyâ€saving wastewater treatment: Taking a sequencing batch reactor as an example. Biotechnology and Bioengineering, 2011, 108, 1260-1267.	3.3	72
234	Layer-controlled growth of MoS2 on self-assembled flower-like Bi2S3 for enhanced photocatalysis under visible light irradiation. NPG Asia Materials, 2016, 8, e263-e263.	7.9	72

#	Article	IF	CITATIONS
235	Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat–CaO ₂ Advanced Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. ACS Sustainable Chemistry and Engineering, 2019, 7, 3544-3555.	6.7	71
236	Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III). Chemosphere, 2020, 260, 127537.	8.2	71
237	Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Biosensors and Bioelectronics, 2010, 26, 470-476.	10.1	70
238	Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 2012, 110, 86-90.	9.6	70
239	Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment. Water Research, 2017, 123, 216-223.	11.3	70
240	Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. Chemosphere, 2018, 213, 276-284.	8.2	70
241	Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresource Technology, 2018, 267, 141-148.	9.6	70
242	Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosensors and Bioelectronics, 2011, 26, 3987-3992.	10.1	69
243	Improving Biogas Separation and Methane Storage with Multilayer Graphene Nanostructure via Layer Spacing Optimization and Lithium Doping: A Molecular Simulation Investigation. Environmental Science & Environmental Science	10.0	69
244	A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protocols, 2014, 9, 112-119.	12.0	69
245	Fabrication of Metallic Nickel–Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 25174-25182.	3.1	69
246	Mesophilic acidification of gelatinaceous wastewater. Journal of Biotechnology, 2002, 93, 99-108.	3.8	68
247	Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 281, 158-167.	9.6	68
248	Microbial Products of Activated Sludge in Biological Wastewater Treatment Systems: A Critical Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 187-223.	12.8	67
249	Reduced Graphene Oxide Supported Palladium Nanoparticles via Photoassisted Citrate Reduction for Enhanced Electrocatalytic Activities. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15795-15801.	8.0	67
250	Degradation of landfill leachate compounds by persulfate for groundwater remediation. Chemical Engineering Journal, 2017, 307, 399-407.	12.7	67
251	Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 2018, 249, 431-438.	9.6	67
252	Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. Journal of Cleaner Production, 2019, 229, 412-419.	9.3	67

#	Article	IF	CITATIONS
253	Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: Insights in direct interspecies electron transfer mechanism. Bioresource Technology, 2020, 316, 123901.	9.6	67
254	Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresource Technology, 2013, 136, 711-714.	9.6	66
255	Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. Journal of Colloid and Interface Science, 2020, 566, 33-45.	9.4	66
256	Selective electrochemical CO2 reduction on Cu-Pd heterostructure. Applied Catalysis B: Environmental, 2020, 270, 118864.	20.2	66
257	FTIR-spectral analysis of two photosynthetic H2-producing strains and their extracellular polymeric substances. Applied Microbiology and Biotechnology, 2006, 73, 204-210.	3.6	65
258	Synthesis of BiOCl $\langle sub \rangle \langle i \rangle \langle j \rangle Br \langle sub \rangle 1\hat{a}^{\circ} \langle i \rangle \langle j \rangle Nanoplate Solid Solutions as a Robust Photocatalyst with Tunable Band Structure. Chemistry - A European Journal, 2015, 21, 11872-11877.$	3.3	65
259	Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresource Technology, 2019, 283, 316-325.	9.6	65
260	Toxic effects of imidazolium-based ionic liquids on Caenorhabditis elegans: The role of reactive oxygen species. Chemosphere, 2013, 93, 2399-2404.	8.2	64
261	Fabrication of BiOBrxI1â^'x photocatalysts with tunable visible light catalytic activity by modulating band structures. Scientific Reports, 2016, 6, 22800.	3.3	64
262	Directed Biofabrication of Nanoparticles through Regulating Extracellular Electron Transfer. Journal of the American Chemical Society, 2017, 139, 12149-12152.	13.7	64
263	Hierarchically porous biochar for supercapacitor and electrochemical H2O2 production. Chemical Engineering Journal, 2020, 402, 126171.	12.7	64
264	Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnology Advances, 2020, 44, 107610.	11.7	64
265	Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight. Chemosphere, 2021, 284, 131386.	8.2	64
266	A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell. Applied Energy, 2012, 98, 594-596.	10.1	63
267	Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. Applied Energy, 2012, 93, 229-236.	10.1	63
268	Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO ₂ Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Analytical Chemistry, 2018, 90, 3165-3173.	6.5	63
269	Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Research, 2021, 199, 117198.	11.3	63
270	Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis. Water Research, 2011, 45, 674-680.	11.3	62

#	Article	IF	Citations
271	Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. Water Research, 2006, 40, 3596-3602.	11.3	61
272	Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 2012, 93, 847-857.	3.6	61
273	Hydrogen production in a light-driven photoelectrochemical cell. Applied Energy, 2014, 113, 164-168.	10.1	61
274	Ni–Pd core–shell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017, 5, 9233-9240.	10.3	61
275	Microscale Analysis of <i>in Vitro</i> Anaerobic Degradation of Lignocellulosic Wastes by Rumen Microorganisms. Environmental Science & Environmental	10.0	60
276	A modeling approach to describe ZVI-based anaerobic system. Water Research, 2013, 47, 6007-6013.	11.3	60
277	Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. Water Research, 2016, 88, 703-710.	11.3	60
278	Enhancement of azo dye decolourization in a MFC–MEC coupled system. Bioresource Technology, 2016, 202, 93-100.	9.6	60
279	Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge. Bioresource Technology, 2019, 279, 307-316.	9.6	60
280	Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules. International Journal of Hydrogen Energy, 2009, 34, 5061-5071.	7.1	59
281	Direct Electricity Recovery from <i>Canna indica</i> by an Air-Cathode Microbial Fuel Cell Inoculated with Rumen Microorganisms. Environmental Science & Environmental Science	10.0	59
282	Characterization of dewatering process of activated sludge assisted by cationic surfactants. Biochemical Engineering Journal, 2014, 91, 174-178.	3.6	59
283	Biogas production from anaerobic co-digestion of waste activated sludge: co-substrates and influencing parameters. Reviews in Environmental Science and Biotechnology, 2019, 18, 771-793.	8.1	59
284	Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. International Biodeterioration and Biodegradation, 2005, 55, 233-238.	3.9	58
285	Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. Biotechnology and Bioengineering, 2011, 108, 345-353.	3.3	58
286	Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors. Bioresource Technology, 2014, 171, 472-476.	9.6	58
287	Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. Journal of Hazardous Materials, 2015, 282, 158-164.	12.4	58
288	One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr(<scp>vi</scp>) reduction. Environmental Science: Nano, 2016, 3, 745-753.	4.3	58

#	Article	lF	Citations
289	Rapid Release of Arsenite from Roxarsone Bioreduction by Exoelectrogenic Bacteria. Environmental Science and Technology Letters, 2017, 4, 350-355.	8.7	58
290	Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms. Water Research, 2019, 165, 114980.	11.3	58
291	Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. Water Research, 2007, 41, 2361-2370.	11.3	57
292	Modeling Microbial Products in Activated Sludge under Feastâ^'Famine Conditions. Environmental Science & Environmental Science	10.0	57
293	A novel bioflocculant produced by <i><scp>K</scp>lebsiella sp</i> . and its application to sludge dewatering. Water and Environment Journal, 2012, 26, 560-566.	2.2	57
294	Competitive sorption of heavy metals by water hyacinth roots. Environmental Pollution, 2016, 219, 837-845.	7.5	57
295	Mathematical modeling of autotrophic denitrification (AD) process with sulphide as electron donor. Water Research, 2016, 91, 225-234.	11.3	57
296	Direct generation of hydroxyl radicals over bismuth oxybromide nanobelts with tuned band structure for photocatalytic pollutant degradation under visible light irradiation. Applied Catalysis B: Environmental, 2018, 237, 464-472.	20.2	57
297	Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. International Journal of Hydrogen Energy, 2007, 32, 1086-1094.	7.1	56
298	Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water Research, 2012, 46, 4371-4378.	11.3	56
299	Species of phosphorus in the extracellular polymeric substances of EBPR sludge. Bioresource Technology, 2013, 142, 714-718.	9.6	56
300	Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed byÂhigh-energy {001} facets. Water Research, 2014, 66, 273-282.	11.3	56
301	Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. Bioresource Technology, 2018, 260, 61-67.	9.6	56
302	Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Applied Catalysis B: Environmental, 2022, 302, 120845.	20.2	56
303	Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. International Journal of Hydrogen Energy, 2011, 36, 11640-11645.	7.1	55
304	A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by Gamma radiation. RSC Advances, 2012, 2, 494-500.	3.6	55
305	Carbon nanotubes promote Cr(VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochemical Engineering Journal, 2013, 77, 183-189.	3.6	55
306	Effect of nickel on the flocculability, settleability, and dewaterability of activated sludge. Bioresource Technology, 2017, 224, 188-196.	9.6	55

#	Article	IF	Citations
307	Pseudocapacitive Niâ€Coâ€Fe Hydroxides/Nâ€Doped Carbon Nanoplatesâ€Based Electrocatalyst for Efficient Oxygen Evolution. Small, 2018, 14, e1801878.	10.0	55
308	Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: Reactive kinetics, degradation products and mechanism. Chemical Engineering Journal, 2018, 354, 983-994.	12.7	55
309	Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. Bioresource Technology, 2019, 274, 430-438.	9.6	55
310	A Generalized Model for Aerobic Granule-based Sequencing Batch Reactor. 1. Model Development. Environmental Science & Environm	10.0	54
311	Surfactant-mediated settleability and dewaterability of activated sludge. Chemical Engineering Science, 2014, 116, 228-234.	3.8	54
312	Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. Journal of Materials Chemistry A, 2016, 4, 1632-1636.	10.3	54
313	Single-molecule and -particle probing crystal edge/corner as highly efficient photocatalytic sites on a single TiO ₂ particle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18827-18833.	7.1	54
314	Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Bioresource Technology, 2019, 288, 121598.	9.6	54
315	Assessment of Multiple Sustainability Demands for Wastewater Treatment Alternatives: A Refined Evaluation Scheme and Case Study. Environmental Science & Evaluation Scheme and Case Study. Environmental Science & Evaluation Scheme and Case Study. Environmental Science & Evaluation Scheme and Case Study.	10.0	53
316	An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 2015, 12, 33-42.	16.0	53
317	Impairment of Biofilm Formation by TiO ₂ Photocatalysis through Quorum Quenching. Environmental Science & Environmen	10.0	53
318	Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environmental Pollution, 2017, 220, 1359-1365.	7. 5	53
319	Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid. Chemosphere, 2019, 231, 495-501.	8.2	53
320	Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. Environmental Pollution, 2019, 244, 228-237.	7.5	53
321	Hydrodynamics of upflow anaerobic sludge blanket reactors. AICHE Journal, 2009, 55, 516-528.	3.6	52
322	An innovative miniature microbial fuel cell fabricated using photolithography. Biosensors and Bioelectronics, 2011, 26, 2841-2846.	10.1	52
323	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. Environmental Science & Environmenta	10.0	52
324	Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. Bioresource Technology, 2017, 246, 234-241.	9.6	52

#	Article	IF	Citations
325	Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: Performance, mechanism, and implication. Bioresource Technology, 2019, 279, 108-116.	9.6	52
326	Mediation of functional gene and bacterial community profiles in the sediments of eutrophic Chaohu Lake by total nitrogen and season. Environmental Pollution, 2019, 250, 233-240.	7.5	52
327	Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. Journal of Colloid and Interface Science, 2021, 586, 551-562.	9.4	52
328	Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	52
329	Anaerobic digestion of cattail by rumen cultures. Waste Management, 2006, 26, 1222-1228.	7.4	51
330	Kinetics and Mechanisms of Radiolytic Degradation of Nitrobenzene in Aqueous Solutions. Environmental Science & Environmental	10.0	51
331	Carbon Nanotubes Alter the Electron Flow Route and Enhance Nitrobenzene Reduction by <i>Shewanella oneidensis</i> MR-1. Environmental Science and Technology Letters, 2014, 1, 128-132.	8.7	51
332	Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. Waste Management, 2015, 46, 133-139.	7.4	51
333	Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent. Enzyme and Microbial Technology, 2016, 95, 230-235.	3.2	51
334	Sulfamethazine (SMZ) affects fermentative short-chain fatty acids production from waste activated sludge. Science of the Total Environment, 2018, 639, 1471-1479.	8.0	51
335	Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and Ag3PO4. Environment International, 2019, 126, 560-567.	10.0	51
336	Understanding the mechanism of how anaerobic fermentation deteriorates sludge dewaterability. Chemical Engineering Journal, 2021, 404, 127026.	12.7	51
337	Drag Coefficient of Porous and Permeable Microbial Granules. Environmental Science & Emp; Technology, 2008, 42, 1718-1723.	10.0	50
338	Evaluating the impact of operational parameters on the formation of soluble microbial products (SMP) by activated sludge. Water Research, 2013, 47, 1073-1079.	11.3	50
339	Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. Journal of Hazardous Materials, 2017, 323, 602-610.	12.4	50
340	Ultrasensitive Fluorescence Detection of Peroxymonosulfate Based on a Sulfate Radical-Mediated Aromatic Hydroxylation. Analytical Chemistry, 2018, 90, 14439-14446.	6.5	50
341	How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 2018, 206, 491-501.	8.2	50
342	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. Water Research, 2020, 185, 116203.	11.3	50

#	Article	IF	Citations
343	Fractional characterization of a bio-oil derived from rice husk. Biomass and Bioenergy, 2011, 35, 671-678.	5.7	49
344	Synthesis of Layered MnO2 Nanosheets for Enhanced Oxygen Reduction Reaction Catalytic Activity. Electrochimica Acta, 2014, 132, 239-243.	5.2	49
345	Outcompeting Presence of Acyl-Homoserine-Lactone (AHL)-Quenching Bacteria over AHL-Producing Bacteria in Aerobic Granules. Environmental Science and Technology Letters, 2016, 3, 36-40.	8.7	49
346	Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 2020, 386, 121651.	12.4	49
347	Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology, 2006, 72, 126-131.	3.6	48
348	Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM). International Journal of Hydrogen Energy, 2009, 34, 7959-7963.	7.1	48
349	Effects of Cd(II) on wastewater biological nitrogen and phosphorus removal. Chemosphere, 2014, 117, 27-32.	8.2	48
350	Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Bioresource Technology, 2019, 294, 122235.	9.6	48
351	Promoting bidirectional extracellular electron transfer of <i>Shewanella oneidensis</i> MRâ€1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnology and Bioengineering, 2020, 117, 1294-1303.	3.3	48
352	Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. International Journal of Hydrogen Energy, 2007, 32, 3308-3314.	7.1	47
353	Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Applied Microbiology and Biotechnology, 2011, 89, 201-208.	3.6	47
354	Inducing mechanism of biological phosphorus removal driven by the aerobic/extendedâ€idle regime. Biotechnology and Bioengineering, 2012, 109, 2798-2807.	3.3	47
355	Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@Fe2O3-based composite conditioner. Bioresource Technology, 2016, 218, 526-532.	9.6	47
356	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie, 2017, 129, 3748-3752.	2.0	47
357	Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere, 2018, 196, 78-86.	8.2	47
358	Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system. Chemosphere, 2019, 216, 749-756.	8.2	47
359	Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. Environmental Science and Technology Letters, 2014, 1, 167-171.	8.7	46
360	Biosorption of Cr (VI) by Typha angustifolia: Mechanism and responses to heavy metal stress. Bioresource Technology, 2014, 160, 89-92.	9.6	46

#	Article	IF	Citations
361	Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. Applied Microbiology and Biotechnology, 2009, 83, 1159-1169.	3.6	45
362	Kinetic analysis on the production of polyhydroxyalkanoates from volatile fatty acids by Cupriavidus necator with a consideration of substrate inhibition, cell growth, maintenance, and product formation. Biochemical Engineering Journal, 2010, 49, 422-428.	3.6	45
363	Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm, 2013, 15, 7895.	2.6	45
364	A robust cocatalyst Pd ₄ S uniformly anchored onto Bi ₂ S ₃ nanorods for enhanced visible light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 4301-4306.	10.3	45
365	Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems. Water Research, 2015, 84, 171-180.	11.3	45
366	Fluorescence Approach for the Determination of Fluorescent Dissolved Organic Matter. Analytical Chemistry, 2017, 89, 4264-4271.	6.5	45
367	Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution, 2017, 231, 1388-1392.	7.5	45
368	Substrate Metabolism-Driven Assembly of High-Quality CdS _{<i>></i>} Quantum Dots in <i>Escherichia coli</i> <td>14.6</td> <td>45</td>	14.6	45
369	In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95, 185-191.	3.2	44
370	Augmentation of acyl homoserine lactones-producing and -quenching bacterium into activated sludge for its granulation. Water Research, 2017, 125, 309-317.	11.3	44
371	Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 2018, 205, 484-492.	8.2	44
372	Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. Bioresource Technology, 2020, 318, 124266.	9.6	44
373	Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environmental Science: Nano, 2017, 4, 1817-1826.	4.3	43
374	Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network. Scientific Reports, 2014, 4, 3732.	3.3	42
375	Lab-scale thermal analysis of electronic waste plastics. Journal of Hazardous Materials, 2016, 310, 217-225.	12.4	42
376	Denitrification in an integrated bioelectro-photocatalytic system. Water Research, 2017, 109, 88-93.	11.3	42
377	Ammonia sensing by closely packed WO3 microspheres with oxygen vacancies. Chemosphere, 2018, 204, 202-209.	8.2	42
378	Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. ACS Catalysis, 2019, 9, 3589-3594.	11.2	42

#	Article	IF	Citations
379	Interface-Promoted Direct Oxidation of <i>p</i> -Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide. Environmental Science & Environmental Science	10.0	42
380	Light-driven microbial dissimilatory electron transfer to hematite. Physical Chemistry Chemical Physics, 2014, 16, 23003-23011.	2.8	41
381	Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution. Chemosphere, 2014, 113, 175-181.	8.2	41
382	Plasmonic photocatalyst Ag@AgCl/ZnSn(OH) ₆ : synthesis, characterization and enhanced visible-light photocatalytic activity in the decomposition of dyes and phenol. RSC Advances, 2015, 5, 63152-63164.	3.6	41
383	Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis. Journal of Hazardous Materials, 2016, 302, 262-266.	12.4	41
384	The behavior of melamine in biological wastewater treatment system. Journal of Hazardous Materials, 2017, 322, 445-453.	12.4	41
385	A simple method for assaying anaerobic biodegradation of dyes. Bioresource Technology, 2018, 251, 204-209.	9.6	41
386	Optimizing sludge dewatering with a combined conditioner of Fenton's reagent and cationic surfactant. Journal of Environmental Sciences, 2020, 88, 21-30.	6.1	41
387	In situ organic Fenton-like catalysis triggered by anodic polymeric intermediates for electrochemical water purification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30966-30972.	7.1	41
388	Thermochemical Conversion of Lignocellulosic Biomass into Mass-Producible Fuels: Emerging Technology Progress and Environmental Sustainability Evaluation. ACS Environmental Au, 2022, 2, 98-114.	7.0	41
389	Interaction between Dissolved Organic Matter and Long-Chain Ionic Liquids: A Microstructural and Spectroscopic Correlation Study. Environmental Science & Environmental Scienc	10.0	40
390	An approach for modeling two-step denitrification in activated sludge systems. Chemical Engineering Science, 2008, 63, 1449-1459.	3.8	39
391	Manipulation of Microbial Extracellular Electron Transfer by Changing Molecular Structure of Phenazine-Type Redox Mediators. Environmental Science & E	10.0	39
392	Self-assembly Z-scheme heterostructured photocatalyst of Ag ₂ O@Ag-modified bismuth vanadate for efficient photocatalytic degradation of single and dual organic pollutants under visible light irradiation. RSC Advances, 2016, 6, 60291-60307.	3.6	39
393	Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate. RSC Advances, 2016, 6, 987-994.	3.6	39
394	Temperature–dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene. Environmental Pollution, 2017, 222, 23-31.	7.5	39
395	Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. Science of the Total Environment, 2020, 707, 136105.	8.0	39
396	Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Applied Microbiology and Biotechnology, 2011, 90, 1119-1127.	3.6	38

#	Article	IF	Citations
397	Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extendedâ€idle regime. Biotechnology and Bioengineering, 2013, 110, 827-837.	3.3	38
398	Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. Biochemical Engineering Journal, 2016, 105, 214-219.	3.6	38
399	Electrochemically Catalytic Degradation of Phenol with Hydrogen Peroxide in Situ Generated and Activated by a Municipal Sludge-Derived Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 5540-5546.	6.7	38
400	Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of <i>Shewanella oneidensis</i> Environmental Science & Enhance & Enhance & Enhance the Pollutant Degradation Capacity of <i> Shewanella oneidensis</i> Environmental Science & Enhance	10.0	38
401	Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process. Applied Microbiology and Biotechnology, 2007, 74, 208-214.	3.6	37
402	Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers. Journal of Colloid and Interface Science, 2008, 321, 96-102.	9.4	37
403	One-way and two-way shape memory effects of a high-strain <i>ci>< i>-1,4-polybutadiene–polyethylene copolymer based dynamic network <i>via< i> self-complementary quadruple hydrogen bonding. Polymer Chemistry, 2019, 10, 718-726.</i></i>	3.9	37
404	Bio-oil upgrading at ambient pressure and temperature using zero valent metals. Green Chemistry, 2012, 14, 2226.	9.0	36
405	Electro-assisted groundwater bioremediation: Fundamentals, challenges and future perspectives. Bioresource Technology, 2015, 196, 677-684.	9.6	36
406	A Dissolutionâ€Regeneration Route to Synthesize Blue Tungsten Oxide Flowers and their Applications in Photocatalysis and Gas Sensing. Advanced Materials Interfaces, 2016, 3, 1500417.	3.7	36
407	Evolution of Membrane Fouling Revealed by Label-Free Vibrational Spectroscopic Imaging. Environmental Science & Environmental	10.0	36
408	Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. Journal of Hazardous Materials, 2018, 342, 150-157.	12.4	36
409	Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. Journal of Hazardous Materials, 2018, 357, 244-252.	12.4	36
410	Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs. Biotechnology and Bioengineering, 2011, 108, 804-812.	3.3	35
411	Cultivation of aerobic granules for polyhydroxybutyrate production from wastewater. Bioresource Technology, 2014, 159, 442-445.	9.6	35
412	Conformations and molecular interactions of poly- \hat{l}^3 -glutamic acid as a soluble microbial product in aqueous solutions. Scientific Reports, 2017, 7, 12787.	3.3	35
413	Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots. Environmental Science & Environmental Sc	10.0	35
414	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	3.3	35

#	Article	IF	Citations
415	2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. Chemosphere, 2022, 287, 132061.	8.2	35
416	Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic–Abiotic Hybrid Systems. Journal of the American Chemical Society, 2022, 144, 6434-6441.	13.7	35
417	Kinetics of reductive degradation of Orange II in aqueous solution by zero-valent iron. Journal of Chemical Technology and Biotechnology, 2004, 79, 1429-1431.	3.2	34
418	Redox reaction characteristics of riboflavin: A fluorescence spectroelectrochemical analysis and density functional theory calculation. Bioelectrochemistry, 2014, 98, 103-108.	4.6	34
419	Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics. Scientific Reports, 2016, 6, 30082.	3.3	34
420	A Nearâ€Infrared Photoactuator Based on Shape Memory Semicrystalline Polymers toward Lightâ€Fueled Crane, Grasper, and Walker. Advanced Optical Materials, 2019, 7, 1900784.	7.3	34
421	Carbon-Based Catalyst Synthesized and Immobilized under Calcium Salt Assistance To Boost Singlet Oxygen Evolution for Pollutant Degradation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43180-43187.	8.0	34
422	Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China. PLoS ONE, 2014, 9, e97751.	2.5	33
423	Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method. Bioresource Technology, 2014, 157, 161-165.	9.6	33
424	Biomethanation of brewery wastewater using an anaerobic upflow blanket filter. Journal of Cleaner Production, 1996, 4, 219-223.	9.3	32
425	Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose. Biotechnology and Bioengineering, 2004, 87, 813-822.	3.3	32
426	Techno-economic evaluation of the integrated biosorption–pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresource Technology, 2011, 102, 6260-6265.	9.6	32
427	Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials. Electrochimica Acta, 2017, 225, 452-457.	5.2	32
428	Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids. Synthesis, 2018, 50, 2924-2929.	2.3	32
429	Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment. Environmental Science and Pollution Research, 2018, 25, 27628-27638.	5.3	32
430	Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. Journal of Colloid and Interface Science, 2019, 535, 318-324.	9.4	32
431	Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Current Opinion in Chemical Biology, 2020, 59, 104-110.	6.1	32
432	Novel Online Monitoring and Alert System for Anaerobic Digestion Reactors. Environmental Science & Env	10.0	31

#	Article	IF	Citations
433	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. Scientific Reports, 2016, 6, 21622.	3.3	31
434	Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	31
435	Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 290, 121776.	9.6	31
436	\hat{l} ±-Diimine nickel complexes bearing axially bulky terphenyl and equatorially bulky dibenzobarrelene groups: synthesis, characterization and olefin polymerization studies. Polymer Chemistry, 2020, 11, 6783-6793.	3.9	31
437	Effect of citric acid on extracellular polymeric substances disruption and cell lysis in the waste activated sludge by pH regulation. Bioresource Technology, 2020, 302, 122859.	9.6	31
438	Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization. Journal of Chromatography A, 2014, 1361, 162-168.	3.7	30
439	Quantitative determination of Al-2 quorum-sensing signal of bacteria using high performance liquid chromatography–tandem mass spectrometry. Journal of Environmental Sciences, 2017, 52, 204-209.	6.1	30
440	Photochemical Anti-Fouling Approach for Electrochemical Pollutant Degradation on Facet-Tailored TiO ₂ Single Crystals. Environmental Science & Environmental Science	10.0	30
441	Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Bioresource Technology, 2020, 299, 122611.	9.6	30
442	Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. Chemosphere, 2021, 278, 130508.	8.2	30
443	Reusing Sulfur-Poisoned Palladium Waste as a Highly Active, Nonradical Fenton-like Catalyst for Selective Degradation of Phenolic Pollutants. Environmental Science & Environm	10.0	30
444	A novel integrated approach to quantitatively evaluate the efficiency of extracellular polymeric substances (EPS) extraction process. Applied Microbiology and Biotechnology, 2012, 96, 1577-1585.	3.6	29
445	Hydration interactions and stability of soluble microbial products in aqueous solutions. Water Research, 2013, 47, 5921-5929.	11.3	29
446	An UV–vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. Biosensors and Bioelectronics, 2015, 64, 25-29.	10.1	29
447	Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination. Water Research, 2016, 102, 533-541.	11.3	29
448	Dendritic core-shell silica spheres with large pore size for separation of biomolecules. Journal of Chromatography A, 2018, 1540, 31-37.	3.7	29
449	Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake. Applied Microbiology and Biotechnology, 2018, 102, 10791-10801.	3.6	29
450	Uptake, accumulation and metabolization of 1-butyl-3-methylimidazolium bromide by ryegrass from water: Prospects for phytoremediation. Water Research, 2019, 156, 82-91.	11.3	29

#	Article	IF	CITATIONS
451	Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in <i>Shewanella oneidensis</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23001-23010.	7.1	29
452	Developing a baseâ€editing system to expand the carbon source utilization spectra of ⟨i⟩Shewanella oneidensis⟨ i⟩ MRâ€1 for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 2389-2400.	3.3	29
453	Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18743-18749.	8.0	29
454	In-situ regeneration of tetracycline-saturated hierarchical porous carbon by peroxydisulfate oxidation process: Performance, mechanism and application. Chemical Engineering Journal, 2022, 427, 131749.	12.7	29
455	An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal. Scientific Reports, 2015, 5, 8602.	3.3	28
456	Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles. Ecotoxicology, 2015, 24, 2067-2072.	2.4	28
457	Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Separation and Purification Technology, 2016, 166, 164-170.	7.9	28
458	Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource Technology, 2019, 285, 121363.	9.6	28
459	The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851.	11.3	28
460	Chemical recycling of the waste anodic electrolyte from the TiO sub>2 /sub> nanotube preparation process to synthesize facet-controlled TiO sub>2 /sub> single crystals as an efficient photocatalyst. Green Chemistry, 2014, 16, 2745-2753.	9.0	27
461	Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials. Frontiers of Environmental Science and Engineering, 2015, 9, 861-866.	6.0	27
462	The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method. Journal of Hazardous Materials, 2020, 384, 121363.	12.4	27
463	Phosphorus Recovery from Wastewater Prominently through a Fe(II)–P Oxidizing Pathway in the Autotrophic Iron-Dependent Denitrification Process. Environmental Science & Emp; Technology, 2020, 54, 11576-11583.	10.0	27
464	Chemical-Equilibrium-Based Model for Describing the Strength of Sludge:  Taking Hydrogen-Producing Sludge as an Example. Environmental Science & En	10.0	26
465	Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1. Biochemical Engineering Journal, 2012, 68, 227-230.	3.6	26
466	A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. Biosensors and Bioelectronics, 2012, 35, 115-122.	10.1	26
467	Capture of H ₂ S from binary gas mixture by imidazoliumâ€based ionic liquids with nonfluorous anions: A theoretical study. AICHE Journal, 2013, 59, 3824-3833.	3.6	26
468	Hexagonal microrods of anatase tetragonal TiO2: self-directed growth and superior photocatalytic performance. Chemical Communications, 2013, 49, 6075.	4.1	26

#	Article	IF	CITATIONS
469	Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: Roles of insulin-like growth factor-1 signaling pathway. Chemosphere, 2014, 112, 248-255.	8.2	26
470	Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. Water Research, 2016, 98, 235-241.	11.3	26
471	Photochemical Protection of Reactive Sites on Defective TiO _{2â€"<i>x</i>} Surface for Electrochemical Water Treatment. Environmental Science & Electrochemical Water Treatment & Electrochemical Water Treatment & Electrochemical Water Treatment & Electrochemical Water & Electr	10.0	26
472	Fine tuning of phosphorus active sites on g-C ₃ N ₄ nanosheets for enhanced photocatalytic decontamination. Journal of Materials Chemistry A, 2021, 9, 10933-10944.	10.3	26
473	Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. Journal of Hazardous Materials, 2016, 307, 82-90.	12.4	25
474	A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Mikrochimica Acta, 2017, 184, 4099-4106.	5.0	25
475	Biogenic Synthesis of Pd-Based Nanoparticles with Enhanced Catalytic Activity. ACS Applied Nano Materials, 2018, 1, 1467-1475.	5. 0	25
476	Co-pyrolysis of biomass and soapstock in a downdraft reactor using a novel ZSM-5/SiC composite catalyst. Bioresource Technology, 2019, 279, 202-208.	9.6	25
477	Performance and Mechanism of Potassium Ferrate(VI) Enhancing Dark Fermentative Hydrogen Accumulation from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2020, 8, 8681-8691.	6.7	25
478	Simultaneous evaluation of bioactivity and settleability of activated sludge using fractal dimension as an intermediate variable. Water Research, 2020, 178, 115834.	11.3	25
479	Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime. Chemosphere, 2014, 105, 75-81.	8.2	24
480	Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. Chemosphere, 2018, 211, 345-351.	8.2	24
481	Solar-energy-facilitated CdS _x Se _{1â^'x} quantum dot bio-assembly in <i>Escherichia coli</i> and <i>Tetrahymena pyriformis</i> Journal of Materials Chemistry A, 2019, 7, 6205-6212.	10.3	24
482	The fate of cyanuric acid in biological wastewater treatment system and its impact on biological nutrient removal. Journal of Environmental Management, 2018, 206, 901-909.	7.8	24
483	Sulfide enhances the Fe(II)/Fe(III) cycle in Fe(III)-peroxymonosulfate system for rapid removal of organic contaminants: Treatment efficiency, kinetics and mechanism. Journal of Hazardous Materials, 2022, 435, 128970.	12.4	24
484	Application of a weak magnetic field to improve microbial fuel cell performance. Ecotoxicology, 2015, 24, 2175-2180.	2.4	23
485	Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment. Chemosphere, 2015, 140, 79-84.	8.2	23
486	A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresource Technology, 2017, 241, 743-749.	9.6	23

#	Article	IF	CITATIONS
487	Spatiotemporal Organization of Biofilm Matrix Revealed by Confocal Raman Mapping Integrated with Non-negative Matrix Factorization Analysis. Analytical Chemistry, 2020, 92, 707-715.	6.5	23
488	In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. Journal of Hazardous Materials, 2021, 419, 126389.	12.4	23
489	Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst. Chemosphere, 2015, 125, 57-63.	8.2	22
490	Rapid Detection and Enumeration of Exoelectrogenic Bacteria in Lake Sediments and a Wastewater Treatment Plant Using a Coupled WO ₃ Nanoclusters and Most Probable Number Method. Environmental Science and Technology Letters, 2016, 3, 133-137.	8.7	22
491	A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochemical Engineering Journal, 2017, 124, 130-137.	3.6	22
492	Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by <i>Shewanella oneidensis</i> MR-1 at the molecular scale. Environmental Science: Nano, 2017, 4, 2395-2404.	4.3	22
493	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35090-35098.	8.0	22
494	Interfacial Electron Transfer from the Outer Membrane Cytochrome OmcA to Graphene Oxide in a Microbial Fuel Cell: Spectral and Electrochemical Insights. ACS Energy Letters, 2018, 3, 2449-2456.	17.4	22
495	Silica Removal Using Magnetic Iron–Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis. Environmental Science & Emp; Technology, 2019, 53, 13302-13311.	10.0	22
496	Metal–Organic Framework Supported Palladium Nanoparticles: Applications and Mechanisms. Particle and Particle Systems Characterization, 2019, 36, 1800557.	2.3	22
497	Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO2 single crystals. Water Research, 2019, 157, 30-39.	11.3	22
498	Probing protein-induced membrane fouling with in-situ attenuated total reflectance fourier transform infrared spectroscopy and multivariate curve resolution-alternating least squares. Water Research, 2020, 183, 116052.	11.3	22
499	Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). International Journal of Oncology, 2021, 59, .	3.3	22
500	Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Science of the Total Environment, 2021, 794, 148765.	8.0	22
501	Peroxymonosulfate (PMS) activation by mackinawite for the degradation of organic pollutants: Underappreciated role of dissolved sulfur derivatives. Science of the Total Environment, 2022, 811, 151421.	8.0	22
502	Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale. Scientific Reports, 2014, 4, 7078.	3.3	21
503	Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans. Chemosphere, 2016, 157, 65-70.	8.2	21
504	Longer persistence of quorum quenching bacteria over quorum sensing bacteria in aerobic granules. Water Research, 2020, 179, 115904.	11.3	21

#	Article	IF	Citations
505	Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. Journal of Hazardous Materials, 2020, 392, 122336.	12.4	21
506	TiO2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction. Science of the Total Environment, 2021, 760, 144040.	8.0	21
507	Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World Journal of Microbiology and Biotechnology, 2007, 23, 1015-1020.	3.6	20
508	Sunlight-mediated degradation of methyl orange sensitized by riboflavin: Roles of reactive oxygen species. Separation and Purification Technology, 2015, 142, 18-24.	7.9	20
509	Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. Analyst, The, 2016, 141, 6061-6067.	3.5	20
510	Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors. Scientific Reports, 2016, 6, 27243.	3.3	20
511	One-step synthesis of nonstoichiometric TiO2 with designed (101) facets for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2017, 205, 165-172.	20.2	20
512	Experimental and theoretical analyses on the impacts of ionic surfactants on sludge properties. Science of the Total Environment, 2018, 633, 198-205.	8.0	20
513	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. Bioresource Technology, 2019, 284, 16-24.	9.6	20
514	Cation-Ï€ induced surface cleavage of organic pollutants with â‹OH formation from H2O for water treatment. IScience, 2021, 24, 102874.	4.1	20
515	Hydrodynamics of an Electrochemical Membrane Bioreactor. Scientific Reports, 2015, 5, 10387.	3.3	19
516	A force-based mechanistic model for describing activated sludge settling process. Water Research, 2017, 127, 118-126.	11.3	19
517	Diagnosis of the unexpected fluorescent contaminants in quantifying dissolved organic matter using excitation-emission matrix fluorescence spectroscopy. Water Research, 2019, 163, 114873.	11.3	19
518	Selenium Stimulates Cadmium Detoxification in <i>Caenorhabditis elegans</i> through Thiols-Mediated Nanoparticles Formation and Secretion. Environmental Science & Environment	10.0	19
519	Phosphate-Suppressed Selenite Biotransformation by <i>Escherichia coli</i> . Environmental Science & En	10.0	19
520	Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. Journal of Hazardous Materials, 2021, 403, 123611.	12.4	19
521	Pyrolysis of Biomass Wastes to N-Doped Biochar-Stabilized Co Nanoparticles for Efficient Pollutant Degradation Via Peroxymonosulfate Activation. ACS ES&T Engineering, 2021, 1, 1715-1724.	7.6	19
522	Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution. Water Research, 2012, 46, 3490-3496.	11.3	18

#	Article	IF	CITATIONS
523	Probing Membrane Fouling via Infrared Attenuated Total Reflection Mapping Coupled with Multivariate Curve Resolution. ChemPhysChem, 2016, 17, 358-363.	2.1	18
524	Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge. Water Research, 2017, 113, 89-96.	11.3	18
525	Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. Environmental Science and Pollution Research, 2017, 24, 4494-4505.	5.3	18
526	Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine. Chemosphere, 2018, 193, 472-478.	8.2	18
527	Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. Chemosphere, 2019, 235, 814-824.	8.2	18
528	Biological perchlorate reduction: which electron donor we can choose?. Environmental Science and Pollution Research, 2019, 26, 16906-16922.	5. 3	18
529	Enhanced Bioreduction of Radionuclides by Driving Microbial Extracellular Electron Pumping with an Engineered CRISPR Platform. Environmental Science & Enpirology, 2021, 55, 11997-12008.	10.0	18
530	An Integrated Solid-State pH Microelectrode Prepared Using Microfabrication. Electrochimica Acta, 2015, 152, 6-12.	5. 2	17
531	Precipitation of organic arsenic compounds and their degradation products during struvite formation. Journal of Hazardous Materials, 2016, 317, 90-96.	12.4	17
532	Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. Waste Management, 2018, 78, 310-317.	7.4	17
533	Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	17
534	Potential regulates metabolism and extracellular respiration of electroactive <i>Geobacter</i> biofilm. Biotechnology and Bioengineering, 2019, 116, 961-971.	3.3	17
535	Difference of respiration-based approaches for quantifying heterotrophic biomass in activated sludge of biological wastewater treatment plants. Science of the Total Environment, 2019, 664, 45-52.	8.0	17
536	Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata. Applied Energy, 2014, 133, 121-126.	10.1	16
537	Acid-stimulated bioassembly of high-performance quantum dots in <i>Escherichia coli</i> Materials Chemistry A, 2019, 7, 18480-18487.	10.3	16
538	Biogenic Quantum Dots for Sensitive, Label-Free Detection of Mercury Ions. ACS Applied Bio Materials, 2019, 2, 2661-2667.	4.6	16
539	Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects. Renewable and Sustainable Energy Reviews, 2020, 134, 110134.	16.4	16
540	Understanding the interaction between triclocarban and denitrifiers. Journal of Hazardous Materials, 2021, 401, 123343.	12.4	16

#	Article	IF	Citations
541	Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. Science of the Total Environment, 2021, 780, 146662.	8.0	16
542	Recovery of Iron-Dependent Autotrophic Denitrification Activity from Cell–Iron Mineral Aggregation-Induced Reversible Inhibition by Low-Intensity Ultrasonication. Environmental Science & Environm	10.0	16
543	Substrate consumption and biomass growth of Ralstonia eutropha at various SO/XO levels in batch cultures. Bioresource Technology, 2007, 98, 2599-2604.	9.6	15
544	Nonâ€Enzymatic Electrochemical Detection of Glucose with a Gold Nanowire Array Electrode. Electroanalysis, 2014, 26, 656-663.	2.9	15
545	Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage. Frontiers of Environmental Science and Engineering, 2015, 9, 897-904.	6.0	15
546	Solubilization of Waste Activated Sludge and Nitrogenous Compounds Transformation During Solubilization by Thermophilic Enzyme (S-TE) Process. Applied Biochemistry and Biotechnology, 2015, 176, 700-711.	2.9	15
547	Respiration adaptation of activated sludge under dissolved oxygen and hypochlorite stressed conditions. Bioresource Technology, 2018, 248, 171-178.	9.6	15
548	The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Bioresource Technology, 2020, 297, 122428.	9.6	15
549	Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2020, 704, 135849.	8.0	15
550	Optimization of volatile fatty acid compositions for hydrogen production byRhodopseudomonas capsulata. Journal of Chemical Technology and Biotechnology, 2005, 80, 1198-1203.	3.2	14
551	Optimization of Radiolytic Degradation of Poly(vinyl alcohol). Industrial & Engineering Chemistry Research, 2005, 44, 1995-2001.	3.7	14
552	Quantitative Simulation of the Granulation Process of Activated Sludge for Wastewater Treatment. Industrial & Department of the Granulation Process of Activated Sludge for Wastewater Treatment. Industrial & Department of the Granulation Process of Activated Sludge for Wastewater Treatment.	3.7	14
553	Simultaneous carbon and nitrogen removals in membrane bioreactor with mesh filter: An experimental and modeling approach. Chemical Engineering Science, 2013, 95, 78-84.	3.8	14
554	An MFC-Based Online Monitoring and Alert System for Activated Sludge Process. Scientific Reports, 2014, 4, 6779.	3.3	14
555	Boiling significantly promotes photodegradation of perfluorooctane sulfonate. Chemosphere, 2015, 138, 324-327.	8.2	14
556	Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	14
557	Efficiently reducing the plant growth inhibition of CuO NPs using rice husk-derived biochar: experimental demonstration and mechanism investigation. Environmental Science: Nano, 2017, 4, 1722-1732.	4.3	14
558	Probing Microbial Extracellular Respiration Ability Using Riboflavin. Analytical Chemistry, 2020, 92, 10606-10612.	6.5	14

#	Article	IF	CITATIONS
559	Raman micro-spectroscopy monitoring of cytochrome c redox state in <i>Candida utilis</i> during cell death under low-temperature plasma-induced oxidative stress. Analyst, The, 2020, 145, 3922-3930.	3.5	14
560	Rapid and highly efficient genomic engineering with a novel <scp>iEditing</scp> device for programming versatile extracellular electron transfer of electroactive bacteria. Environmental Microbiology, 2021, 23, 1238-1255.	3.8	14
561	Engineering a Rhamnose-Inducible System to Enhance the Extracellular Electron Transfer Ability of <i>Shewanella</i> Genus for Improved Cr(VI) Reduction. ACS ES&T Engineering, 2021, 1, 842-850.	7.6	14
562	Iron Cycle Tuned by Outer-Membrane Cytochromes of Dissimilatory Metal-Reducing Bacteria: Interfacial Dynamics and Mechanisms In Vitro. Environmental Science & Dynamics and Mechanisms In Vitro. Environmental Science & Dynamics 2021, 55, 11424-11433.	10.0	14
563	Sequential Assembly Tailored Interior of Porous Carbon Spheres for Boosted Water Decontamination through Peroxymonosulfate Activation. Advanced Functional Materials, 2022, 32, .	14.9	14
564			

#	Article	lF	CITATIONS
577	Capacity Limit of Simultaneous Temporal Processing: How Many Concurrent †Clocks†in Vision?. PLoS ONE, 2014, 9, e91797.	2.5	11
578	Understanding the Microbial Internal Storage Turnover in Wastewater Treatment: Retrospect, Prospect, and Challenge. Critical Reviews in Environmental Science and Technology, 2015, 45, 591-612.	12.8	11
579	Fluorescence quenching effects of antibiotics on the main components of dissolved organic matter. Environmental Science and Pollution Research, 2016, 23, 5667-5675.	5.3	11
580	Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	11
581	Fluorescence dynamics of the biosynthesized CdSe quantum dots in Candida utilis. Scientific Reports, 2017, 7, 2048.	3.3	11
582	A simple respirogram-based approach for the management of effluent from an activated sludge system. Bioresource Technology, 2018, 261, 412-419.	9.6	11
583	Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems. Environmental Pollution, 2019, 249, 794-800.	7.5	11
584	Probing operational conditions of mixing and oxygen deficiency using HSV color space. Journal of Environmental Management, 2019, 232, 985-992.	7.8	11
585	Tonalide facilitates methane production from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2021, 779, 146195.	8.0	11
586	Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate. Bioresource Technology, 2021, 336, 125321.	9.6	11
587	Why Should Tryptones Rather Than Bovine Serum Albumin Be Used as Model Proteins to Explore the Interactions between Proteins and Pollutants in Environments?. Environmental Science and Technology Letters, 2021, 8, 1038-1044.	8.7	11
588	Nondestructive 3D imaging and quantification of hydrated biofilm matrix by confocal Raman microscopy coupled with non-negative matrix factorization. Water Research, 2022, 210, 117973.	11.3	11
589	Evaluating the effect of diclofenac on hydrogen production by anaerobic fermentation of waste activated sludge. Journal of Environmental Management, 2022, 308, 114641.	7.8	11
590	Development of a mechanistic model for biological nutrient removal activated sludge systems and application to a fullâ€scale WWTP. AICHE Journal, 2010, 56, 1626-1638.	3.6	10
591	Design, Preparation, and Characterization of a Novel Hyper-Cross-Linked Polyphosphamide Polymer and Its Adsorption for Phenol. Industrial & Engineering Chemistry Research, 2011, 50, 11614-11619.	3.7	10
592	Quantitative Analysis and Fingerprint Profiles for Quality Control of Fructus Schisandrae by Gas Chromatography: Mass Spectrometry. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	10
593	The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination. Scientific Reports, 2014, 4, 5239.	3.3	10
594	Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions. Environmental Pollution, 2015, 207, 123-129.	7.5	10

#	Article	IF	Citations
595	A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	10
596	Multi-hydrolytic enzyme accumulation and microbial community structure of anaerobic co-digestion of food waste and waste-activated sludge. Environmental Technology (United Kingdom), 2020, 41, 478-487.	2.2	10
597	Stable Electrochemical Determination of Dopamine by a Fluorine-Terminated {001}-Exposed TiO ₂ Single Crystal Sensor. Analytical Chemistry, 2020, 92, 9629-9639.	6.5	10
598	Anaerobic reduction of high-polarity nitroaromatic compounds by electrochemically active bacteria: Roles of Mtr respiratory pathway, molecular polarity, mediator and membrane permeability. Environmental Pollution, 2021, 268, 115943.	7. 5	10
599	Roles of cation efflux pump in biomineralization of cadmium into quantum dots in Escherichia coli. Journal of Hazardous Materials, 2021, 412, 125248.	12.4	10
600	Enhancing Fenton-like catalytic efficiency of Bi2WO6 by iodine doping for pollutant degradation. Separation and Purification Technology, 2021, 277, 119447.	7.9	10
601	Semi-quantitative probing of reactive oxygen species in persulfate-based heterogeneous catalytic oxidation systems for elucidating the reaction mechanism. Chemical Engineering Journal, 2022, 446, 137237.	12.7	10
602	Modeling and simulation of the sequencing batch reactor at a fullâ€scale municipal wastewater treatment plant. AICHE Journal, 2009, 55, 2186-2196.	3.6	9
603	Lipase-catalyzed regioselective domino reaction for the synthesis of chromenone derivatives. RSC Advances, 2015, 5, 78927-78932.	3.6	9
604	Approaching the binding between Cu(II) and aerobic granules by a modified titration and $\hat{A}\mu$ -XRF. Frontiers of Environmental Science and Engineering, 2016, 10, 362-367.	6.0	9
605	Spectral insights into the transformation and distribution of CdSe quantum dots in microorganisms during food-chain transport. Scientific Reports, 2017, 7, 4370.	3.3	9
606	Modification of forward osmosis membrane with naturally-available humic acid: Towards simultaneously improved filtration performance and antifouling properties. Environment International, 2019, 131, 105045.	10.0	9
607	Impacts of environmental factors on AHL-producing and AHL-quenching activities of aerobic granules. Applied Microbiology and Biotechnology, 2019, 103, 9181-9189.	3.6	9
608	Tuning of activated sludge in winter based on respirogram profiles under standard and site temperatures. Journal of Environmental Sciences, 2019, 79, 330-338.	6.1	9
609	Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2022, 806, 150347.	8.0	9
610	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environmental Microbiology, 2021, 23, 7578-7590.	3.8	9
611	Unexpected role of electronâ€ŧransfer hub in direct degradation of pollutants by exoelectrogenic bacteria. Environmental Microbiology, 2022, 24, 1838-1848.	3.8	9
612	pH-Dependent Interactions Between Lead and <i>Typha angustifolia</i> Biomass in the Biosorption Process. Industrial & Dependent in the Biosorption Process. Ind	3.7	8

#	Article	IF	Citations
613	Experimental and numerical analysis of the hydrodynamic behaviors of aerobic granules. AICHE Journal, 2011, 57, 2909-2916.	3.6	8
614	A Pt-Bi bimetallic nanoparticle catalyst for direct electrooxidation of formic acid in fuel cells. Frontiers of Environmental Science and Engineering, 2013, 7, 388-394.	6.0	8
615	A highly-ordered and uniform sunflower-like dendritic silver nanocomplex array as reproducible SERS substrate. RSC Advances, 2015, 5, 3860-3867.	3.6	8
616	Ultrafine and Well-Dispersed Nickel Nanoparticles with Hierarchical Structure for Catalytically Breaking a Boron–Hydrogen Bond. ACS Applied Nano Materials, 2018, 1, 6800-6807.	5.0	8
617	Sulfate radical-mediated degradation of phenol and methylene blue by manganese oxide octahedral molecular sieve (OMS-2) activation of peroxymonosulfate. Environmental Science and Pollution Research, 2019, 26, 12963-12974.	5.3	8
618	Intracellular polymers production in anaerobic sludge under salt shock and batch fermentation conditions: Experimental and modelling study. Biochemical Engineering Journal, 2019, 142, 68-73.	3.6	8
619	Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor. Chemosphere, 2021, 264, 128548.	8.2	8
620	Efficient Conversion of the Lignocellulosic Biomass Waste into 5-Hydroxymethylfurfural-Enriched Bio-Oil and Co Nanoparticle-Functionalized Biochar. ACS ES&T Engineering, 2021, 1, 895-904.	7.6	8
621	Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography. Pharmacognosy Magazine, 2014, 10, 292.	0.6	7
622	Evaluation of robustness of activated sludge using calcium-induced enhancement of respiration. Bioresource Technology, 2018, 253, 55-63.	9.6	7
623	Efficiency of sequential UV/H2O2 and biofilm process for the treatment of secondary effluent. Environmental Science and Pollution Research, 2019, 26, 577-585.	5.3	7
624	Density Functional Theory Investigation into the Effects of Dissolved Organic Matter on $H \cdot sub \cdot 2 \cdot sub \cdot O \cdot sub \cdot 2 \cdot sub \cdot O \cdot sub \cdot 3 \cdot sub \cdot O \cdot$	3.1	7
625	Adopting vibration to alleviate the solute buildup and membrane fouling in a forward osmosis system. Journal of Cleaner Production, 2021, 323, 129202.	9.3	7
626	Extracellular electron transfer via multiple electron shuttles in waterborne <i>Aeromonas hydrophila</i> for bioreduction of pollutants. Biotechnology and Bioengineering, 2021, 118, 4760-4770.	3.3	7
627	Zirconium-modified biochar as the efficient adsorbent for low-concentration phosphate: performance and mechanism. Environmental Science and Pollution Research, 2022, 29, 62347-62360.	5.3	7
628	Kinetic analysis on gaseous and aqueous product formation by mixed anaerobic hydrogen-producing cultures. International Journal of Hydrogen Energy, 2013, 38, 15590-15597.	7.1	6
629	Anaerobic Granule Technologies for Hydrogen Recovery from Wastes: The Way Forward. Critical Reviews in Environmental Science and Technology, 2013, 43, 1246-1280.	12.8	6
630	Microbial hydrogen production from phenol in a two-step biological process. International Journal of Hydrogen Energy, 2015, 40, 12627-12633.	7.1	6

#	Article	IF	Citations
631	Probing electron transfer between hemin and riboflavin using a combination of analytical approaches and theoretical calculations. Physical Chemistry Chemical Physics, 2017, 19, 32580-32588.	2.8	6
632	The feasibility of enhanced biological phosphorus removal in the novel oxic/extended idle process using fermentation liquid from sludge fermentation. RSC Advances, 2018, 8, 3321-3327.	3.6	6
633	Controlling CO ₂ â€Responsive Behaviors of Polymersomes Selfâ€Assembled by Coumarinâ€Containing Star Polymer via Regulating Its Crosslinking Pattern. Macromolecular Rapid Communications, 2018, 39, e1800009.	3.9	6
634	Hierarchical H-MOR Zeolite Supported Vanadium Oxide for Dimethyl Ether Direct Oxidation. Catalysts, 2019, 9, 628.	3.5	6
635	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. Process Biochemistry, 2020, 95, 108-114.	3.7	6
636	Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosensors and Bioelectronics, 2020, 156, 112136.	10.1	6
637	Thickness-Dependence of Surface Reconstruction on the (001) Surface of Ultrathin Silicon Nanosheets by Density Functional Tight Binding Simulations. Science of Advanced Materials, 2021, 13, 387-397.	0.7	6
638	Modeling and simulation of the formation and utilization of microbial products in aerobic granular sludge. AICHE Journal, 2010, 56, 546-559.	3.6	5
639	Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process. Science in China Series B: Chemistry, 2009, 52, 2358-2365.	0.8	5
640	Fate and toxic effects of environmental stressors: environmental control. Ecotoxicology, 2015, 24, 2043-2048.	2.4	5
641	A gold microarray electrode on a poly(methylmethacrylate) substrate to improve the performance of microbial fuel cells by modifying biofilm formation. RSC Advances, 2016, 6, 114937-114943.	3.6	5
642	Selective co-production of acetate and methane from wastewater during mesophilic anaerobic fermentation under acidic conditions. Environmental Science: Water Research and Technology, 2017, 3, 720-725.	2.4	5
643	Chemical imaging of fresh vascular smooth muscle cell response by epiâ€detected stimulated Raman scattering. Journal of Biophotonics, 2018, 11, e201700005.	2.3	5
644	Solar-Driven Synchronous Photoelectrochemical Sulfur Recovery and Pollutant Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 9591-9595.	6.7	5
645	Catalytic Oxygen Activation over the Defective CuO Nanoparticles for Ultrafast Dehalogenation. ACS Applied Materials & Dehalogenation. ACS Applied Materials & Dehalogenation. ACS	8.0	5
646	Contact-Adsorption-Regeneration-Stabilization Process for the Treatment of Municipal Wastewater. Journal of Water and Environment Technology, 2009, 7, 83-90.	0.7	4
647	An interneuron progenitor maintains neurogenic potential in vivo and differentiates into GABAergic interneurons after transplantation in the postnatal rat brain. Scientific Reports, 2016, 6, 19003.	3.3	4
648	Determination of Saccharides in Environments Using a Sulfuric Acid-Fluorescence Approach. Environmental Science & Environmenta	10.0	4

#	Article	IF	Citations
649	Plate-Based Kinetic Fluorescence Tests for High-Throughput Screening of Electrochemically Active Bacteria. ACS ES&T Water, 2021, 1, 2139-2145.	4.6	4
650	PCGA: a comprehensive web server for phenotype-cell-gene association analysis. Nucleic Acids Research, 2022, 50, W568-W576.	14.5	4
651	Near-infrared spectroscopy-based quantification of substrate and aqueous products in wastewater anaerobic fermentation processes. Science Bulletin, 2009, 54, 1918-1922.	9.0	3
652	Multiparameter optimization of bromate sorption on anion exchange resin by a two-step statistical strategy: Plackett–Burman and Box–Behnken experimental design. Desalination and Water Treatment, 2016, 57, 15524-15532.	1.0	3
653	Intracellular Hybrid Biosystem in a Protozoan to Trigger Visible-Light-Driven Photocatalysis. ACS Applied Materials & Drotozoan, 13, 19846-19854.	8.0	3
654	Surface characteristics of acidogenic sludge in H2-producing process. Journal of Water and Environment Technology, 2007, 5, 1-12.	0.7	2
655	A thermodynamic analysis of the activated sludge process: Application to soybean wastewater treatment in a sequencing batch reactor. AICHE Journal, 2009, 55, 2737-2745.	3.6	2
656	A Novel Integrated Approach to the Enhanced Production of Polyhydrobutyrate with Mixed Culture in Activated Sludge. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 7478-7483.	3.7	2
657	Equilibrium, kinetics and thermodynamics of Cu(II) biosorption on Chinese chestnut shell pretreated with steam explosion. Water Science and Technology, 2018, 78, 868-877.	2.5	2
658	Pb(II) Adsorption by Nano-Goethite Loaded with Chestnut Shell Pigment. Emerging Materials Research, 2020, 9, 1-10.	0.7	2
659	Comparison between inhibitor and uncoupler for minimizing excess sludge production of an activated sludge process. Frontiers of Environmental Science and Engineering in China, 2007, 1, 63-66.	0.8	1
660	A new polystyrene-latex-based and EPS-containing synthetic sludge. Frontiers of Environmental Science and Engineering, 2012, 6, 131-139.	6.0	1
661	Microbial electrochemical production of energy and value-added chemicals from agri-food wastewater., 2020,, 355-372.		1
662	Systematically assessing genetic strategies for engineering electroactive bacterium to promote bioelectrochemical performances and pollutant removal. Sustainable Energy Technologies and Assessments, 2021, 47, 101506.	2.7	1
663	Hospital sewage treatment facilities witness the fighting against the COVID-19 pandemic. Journal of Environmental Management, 2022, 309, 114728.	7.8	1
664	Revisiting the contribution of FeIVO2+ in Fe(II)/peroxydisulfate system. Chinese Chemical Letters, 2023, 34, 107555.	9.0	1
665	Mn-Doped Biochar Derived from Sewage Sludge for Ciprofloxacin Degradation. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	1
666	TiO2-mediated photocatalytic degradation of Orange II with the presence of Mn2+ in solution. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 311-311.	3.9	0

#	Article	IF	CITATIONS
667	Cu(II), Ni(II) Complexation with Acid Alizarine Blue B in the Presence of Cetyltrimethylammonium Bromide. Chinese Journal of Chemical Physics, 2006, 19, 178-182.	1.3	O
668	Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. Inorganic Chemistry, 2020, 59, 10620-10627.	4.0	0
669	Editorial overview: Microbial "cell factory―for bioenergy production from low-value carbon sources. Current Opinion in Chemical Biology, 2020, 59, A4-A6.	6.1	0