Chia-Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11848645/publications.pdf

Version: 2024-02-01

430874 395702 1,366 33 18 33 citations g-index h-index papers 34 34 34 2657 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Kinetic Study of Photocatalytic Degradation of Phenol over Titania–Silica Mixed Oxide Materials under UV Illumination. Catalysts, 2022, 12, 193.	3.5	9
2	Facile Synthesis of 1,3,5â€Triarylbenzenes and 4â€Arylâ€ <i>NH</i> à€1,2,3â€Triazoles Using Mesoporous Pdâ€MC as Reusable Catalyst. European Journal of Organic Chemistry, 2019, 2019, 104-111.	CMâ€41 2.4	16
3	Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Frontiers in Neuroscience, 2017, 11, 608.	2.8	37
4	An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst. RSC Advances, 2016, 6, 26668-26678.	3.6	35
5	Fe–SBA-15 catalyzed synthesis of 2-alkoxyimidazo[1,2-a]pyridines and screening of their in silico selectivity and binding affinity to biological targets. New Journal of Chemistry, 2016, 40, 9753-9760.	2.8	18
6	Efficient photocatalytic hydrogen evolution system by assembling earth abundant NixOy nanoclusters in cubic MCM-48 mesoporous materials. RSC Advances, 2016, 6, 59169-59180.	3.6	8
7	Solar hydrogen generation over CdS incorporated in Ti-MCM-48 mesoporous materials under visible light illumination. International Journal of Hydrogen Energy, 2016, 41, 4106-4119.	7.1	19
8	Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania. Molecules, 2015, 20, 21881-21895.	3.8	8
9	Investigation of Room Temperature Synthesis of Titanium Dioxide Nanoclusters Dispersed on Cubic MCM-48 Mesoporous Materials. Catalysts, 2015, 5, 1603-1621.	3.5	8
10	Expeditious one-pot three component synthesis of N-aryl dithiocarbamate derivatives using mesoporous Cu-materials. Tetrahedron Letters, 2015, 56, 1609-1613.	1.4	5
11	Robust and effective Ru-bipyridyl dye sensitized Ti-MCM-48 cubic mesoporous materials for photocatalytic hydrogen evolution under visible light illumination. Catalysis Communications, 2015, 65, 14-19.	3.3	13
12	Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Applied Materials & Amp; Interfaces, 2015, 7, 4368-4380.	8.0	94
13	Solar simulated hydrogen evolution using cobalt oxide nanoclusters deposited on titanium dioxide mesoporous materials prepared by evaporation induced self-assembly process. International Journal of Hydrogen Energy, 2015, 40, 10795-10806.	7.1	9
14	Pd–Ti-MCM-48 cubic mesoporous materials for solar simulated hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 905-918.	7.1	21
15	REACTIVITY AND MORPHOLOGY OF Ni, Mo, AND Ni–Mo OXIDE CLUSTERS SUPPORTED ON MCM-48 TOWARD THIOPHENE HYDRODESULPHURIZATION. Surface Review and Letters, 2014, 21, 1450060.	1.1	1
16	Preparation of TiO2–SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 127-136.	7.1	29
17	Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environmental Science: Nano, 2014, 1, 123.	4.3	96
18	Competitive role of structural properties of titania–silica mixed oxides and a mechanistic study of the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 2014, 148-149, 394-405.	20.2	41

#	Article	IF	CITATIONS
19	Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO ₂ dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 2014, 16, 2048-2061.	2.8	17
20	Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. Journal of Renewable and Sustainable Energy, 2013, 5 , .	2.0	39
21	Synthesis-Dependent Oxidation State of Platinum on TiO ₂ and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. Journal of Physical Chemistry C, 2013, 117, 16850-16862.	3.1	40
22	Synthesis and characterization of ligand stabilized CdS-Trititanate composite materials for visible light-induced photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 2656-2669.	7.1	23
23	Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catalysis Communications, 2013, 31, 66-70.	3.3	54
24	Facile synthesis of MOF-5 confined in SBA-15 hybrid material with enhanced hydrostability. Chemical Communications, 2013, 49, 1223.	4.1	78
25	Synthesis of mixed phase anatase-TiO2(B) by a simple wet chemical method. Materials Letters, 2013, 95, 175-177.	2.6	15
26	Exploration of the role of anions in the synthesis of Cr containing mesoporous materials at room temperature. Microporous and Mesoporous Materials, 2013, 170, 211-225.	4.4	6
27	Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Applied Catalysis B: Environmental, 2013, 136-137, 248-259.	20.2	19
28	Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chemical Communications, 2013, 49, 3221.	4.1	64
29	Visible light driven photocatalytic evolution of hydrogen from water over CdS encapsulated MCM-48 materials. RSC Advances, 2012, 2, 5754.	3.6	53
30	Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir, 2012, 28, 396-403.	3.5	321
31	Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. International Journal of Hydrogen Energy, 2012, 37, 8257-8267.	7.1	101
32	Sulfur Dioxide Adsorption on ZnO Nanoparticles and Nanorods. Journal of Physical Chemistry C, 2011, 115, 10164-10172.	3.1	68
33	Size-, and Shape-Selective Synthesis of Platinum Nanoparticles from $Pt(\langle 1\rangle^2\langle 1\rangle$ -Diketonate) $\langle SUB\rangle 2\langle SUB\rangle$ Complexes in Organic Media. Journal of Nanoscience and Nanotechnology, 2010, 10, 5715-5722.	0.9	1