
## Gerald H Thomsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11848228/publications.pdf Version: 2024-02-01



CERALD H THOMSEN

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inducing Complete Polyp Regeneration from the Aboral Physa of the Starlet Sea Anemone<br><em>Nematostella vectensis</em> . Journal of Visualized Experiments, 2017, , .                                             | 0.3 | 3         |
| 2  | Gtpbp2 is a positive regulator of Wnt signaling and maintains low levels of the Wnt negative regulator Axin. Cell Communication and Signaling, 2016, 14, 15.                                                        | 6.5 | 12        |
| 3  | The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling.<br>Development (Cambridge), 2014, 141, 3740-3751.                                                                      | 2.5 | 23        |
| 4  | Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Developmental<br>Biology, 2014, 392, 358-367.                                                                                      | 2.0 | 14        |
| 5  | A staging system for the regeneration of a polyp from the aboral physa of the anthozoan Cnidarian<br><i>Nematostella vectensis</i> . Developmental Dynamics, 2013, 242, 1320-1331.                                  | 1.8 | 36        |
| 6  | A staging system for the regeneration of a polyp from the aboral physa of the anthozoan Cnidarian<br>Nematostella vectensis. Developmental Dynamics, 2013, 242, C1-C1.                                              | 1.8 | 2         |
| 7  | Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. Open Biology, 2012, 2, 120060.                                                                | 3.6 | 3         |
| 8  | Conservation and evolutionary divergence in the activity of receptor-regulated smads. EvoDevo, 2012, 3, 22.                                                                                                         | 3.2 | 5         |
| 9  | Mustn1 is essential for craniofacial chondrogenesis during Xenopus development. Gene Expression<br>Patterns, 2012, 12, 145-153.                                                                                     | 0.8 | 10        |
| 10 | A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm<br>development in Xenopus. Developmental Biology, 2010, 340, 75-87.                                             | 2.0 | 13        |
| 11 | Tumor Necrosis Factor-Receptor–associated Factor-4 Is a Positive Regulator of Transforming Growth<br>Factor-β Signaling That Affects Neural Crest Formation. Molecular Biology of the Cell, 2009, 20,<br>3436-3450. | 2.1 | 44        |
| 12 | The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for<br>understanding metazoan Hedgehog pathway evolution. Developmental Biology, 2008, 313, 501-518.                            | 2.0 | 127       |
| 13 | The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. Journal of Cell<br>Biology, 2008, 183, 267-277.                                                                               | 5.2 | 57        |
| 14 | FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Development Genes and Evolution, 2007, 217, 137-148.                                                        | 0.9 | 91        |
| 15 | Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway. Developmental Biology, 2006, 299, 398-410.                                                                 | 2.0 | 21        |
| 16 | Dorso/Ventral Genes Are Asymmetrically Expressed and Involved in Germ-Layer Demarcation during Cnidarian Gastrulation. Current Biology, 2006, 16, 499-505.                                                          | 3.9 | 128       |
| 17 | Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proceedings of the United States of America, 2006, 103, 11195-11200.                                                          | 7.1 | 210       |
| 18 | The ARID domain protein dril1 is necessary for TGFβ signaling in Xenopus embryos. Developmental<br>Biology, 2005, 278, 542-559.                                                                                     | 2.0 | 17        |

Gerald H Thomsen

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Regulation of Cell Polarity and Protrusion Formation by Targeting RhoA for Degradation. Science, 2003, 302, 1775-1779.                                                        | 12.6 | 495       |
| 20 | Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that Targets the TGFβ Receptor for Degradation.<br>Molecular Cell, 2000, 6, 1365-1375.                                   | 9.7  | 1,219     |
| 21 | A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature, 1999, 400, 687-693.                                                          | 27.8 | 762       |
| 22 | Dominant-Negative Smad2 Mutants Inhibit Activin/Vg1 Signaling and Disrupt Axis Formation in Xenopus.<br>Developmental Biology, 1999, 207, 364-379.                            | 2.0  | 72        |
| 23 | Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus<br>embryos. Mechanisms of Development, 1998, 74, 75-88.                       | 1.7  | 120       |
| 24 | Gamete Interactions in <i>Xenopus laevis</i> : Identification of Sperm Binding Glycoproteins in the Egg<br>Vitelline Envelope. Journal of Cell Biology, 1997, 136, 1099-1108. | 5.2  | 96        |
| 25 | Xenopus laevisSperm–Egg Adhesion Is Regulated by Modifications in the Sperm Receptor and the Egg<br>Vitelline Envelope. Developmental Biology, 1997, 187, 143-153.            | 2.0  | 55        |
| 26 | Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends in Genetics, 1997, 13, 209-211.                                              | 6.7  | 96        |
| 27 | MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma. Cell, 1996, 86, 543-552.                           | 28.9 | 833       |
| 28 | Ventral mesodermal patterning inXenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Genesis, 1995, 17, 78-89.                                             | 2.1  | 320       |
| 29 | Vg1 and regional specification in vertebrates: a new role for an old molecule. Trends in Genetics, 1994, 10, 371-376.                                                         | 6.7  | 16        |
| 30 | Expression of Activin mRNA during Early Development in Xenopus laevis. Developmental Biology, 1993, 157, 474-483.                                                             | 2.0  | 101       |
| 31 | Processed Vg1 protein is an axial mesoderm inducer in xenopus. Cell, 1993, 74, 433-441.                                                                                       | 28.9 | 414       |
| 32 | Major transitions in histone gene expression do not occur during development in Xenopus laevis.<br>Developmental Biology, 1986, 116, 532-538.                                 | 2.0  | 16        |
| 33 | Genomic organization and nucleotide sequence of two distinct histone gene clusters from Xenopus<br>laevis. Journal of Molecular Biology, 1985, 185, 479-499.                  | 4.2  | 111       |