Yu-Lin Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1184555/publications.pdf

Version: 2024-02-01

687363 839539 17 936 13 18 h-index citations g-index papers 18 18 18 1139 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Improving Biological Functions of Three-Dimensional Printed Ti2448 Scaffolds by Decoration with Polydopamine and Extracellular Matrices. ACS Applied Bio Materials, 2022, 5, 3982-3990.	4.6	3
2	Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound. Bioactive Materials, 2021, 6, 4073-4082.	15.6	38
3	<i>In Vitro</i> Study on the Piezodynamic Therapy with a BaTiO ₃ -Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49542-49555.	8.0	18
4	Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 750948.	3.7	17
5	Enhancing corrosion resistance and biocompatibility of interconnected porous \hat{l}^2 -type Ti-24Nb-4Zr-8Sn alloy scaffold through alkaline treatment and type I collagen immobilization. Applied Surface Science, 2019, 476, 325-334.	6.1	27
6	Effect of Microarc Oxidation-Treated Ti6Al4V Scaffold Following Low-Intensity Pulsed Ultrasound Stimulation on Osteogenic Cells in Vitro. ACS Biomaterials Science and Engineering, 2019, 5, 572-581.	5.2	20
7	Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Advanced Engineering Materials, 2018, 20, 1700842.	3.5	315
8	Weak fatigue notch sensitivity in a biomedical titanium alloy exhibiting nonlinear elasticity. Science China Materials, 2018, 61, 537-544.	6.3	8
9	Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Science China Materials, 2018, 61, 525-536.	6.3	46
10	A unique hybrid-structured surface produced by rapid electrochemical anodization enhances bio-corrosion resistance and bone cell responses of \hat{l}^2 -type Ti-24Nb-4Zr-8Sn alloy. Scientific Reports, 2018, 8, 6623.	3.3	16
11	Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study. Materials Science and Engineering C, 2017, 80, 7-17.	7.3	16
12	Effect of HIP Treatment on Fatigue Crack Growth Behavior of Ti–6Al–4V Alloy Fabricated by Electron Beam Melting. Acta Metallurgica Sinica (English Letters), 2017, 30, 1163-1168.	2.9	14
13	Corrosion behaviour and surface modification of the \hat{l}^2 -type biomedical Ti-24Nb-4Zr-8Sn alloys. Materials Technology, 2016, 31, 668-680.	3.0	10
14	Functionally Graded Tiâ€6Alâ€4V Meshes with High Strength and Energy Absorption. Advanced Engineering Materials, 2016, 18, 34-38.	3. 5	98
15	Biomedical titanium alloys and their additive manufacturing. Rare Metals, 2016, 35, 661-671.	7.1	175
16	Corrosion behavior of novel Tiâ€24Nbâ€4Zrâ€7.9Sn alloy for dental implant applications in vitro. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 287-294.	3 . 4	34
17	Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations. Applied Physics Letters, 2008, 93, .	3 . 3	80