Michal A Olszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1184480/publications.pdf

Version: 2024-02-01

91 papers 4,056 citations

35 h-index 123376 61 g-index

93 all docs 93 docs citations

93 times ranked 4090 citing authors

#	Article	IF	CITATIONS
1	Macrophage M1/M2 Polarization Dynamically Adapts to Changes in Cytokine Microenvironments in Cryptococcus neoformans Infection. MBio, 2013, 4, e00264-13.	1.8	353
2	Urease Expression by Cryptococcus neoformans Promotes Microvascular Sequestration, Thereby Enhancing Central Nervous System Invasion. American Journal of Pathology, 2004, 164, 1761-1771.	1.9	237
3	The pathogenesis of chronic obstructivepulmonary disease of horses. British Veterinary Journal, 1996, 152, 283-306.	0.5	226
4	Robust Th1 and Th17 Immunity Supports Pulmonary Clearance but Cannot Prevent Systemic Dissemination of Highly Virulent Cryptococcus neoformans H99. American Journal of Pathology, 2009, 175, 2489-2500.	1.9	147
5	Effect of Cytokine Interplay on Macrophage Polarization during Chronic Pulmonary Infection with Cryptococcus neoformans. Infection and Immunity, 2011, 79, 1915-1926.	1.0	125
6	Victors: a web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Research, 2019, 47, D693-D700.	6.5	120
7	Cryptococcal Urease Promotes the Accumulation of Immature Dendritic Cells and a Non-Protective T2 Immune Response within the Lung. American Journal of Pathology, 2009, 174, 932-943.	1.9	113
8	Role of Dendritic Cells and Alveolar Macrophages in Regulating Early Host Defense against Pulmonary Infection with <i>Cryptococcus neoformans </i> <ir> <ir> <ir> <ir> <ir> <ir> <ir> </ir> Infection and Immunity, 2009, 77, 3749-3758.</ir></ir></ir></ir></ir></ir>	1.0	105
9	Accumulation of CD11b+ Lung Dendritic Cells in Response to Fungal Infection Results from the CCR2-Mediated Recruitment and Differentiation of Ly-6Chigh Monocytes. Journal of Immunology, 2009, $183,8044-8053$.	0.4	105
10	Pulmonary Infection with an Interferon- \hat{l}^3 -Producing Cryptococcus neoformans Strain Results in Classical Macrophage Activation and Protection. American Journal of Pathology, 2010, 176, 774-785.	1.9	105
11	Leptin Corrects Host Defense Defects after Acute Starvation in Murine Pneumococcal Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 212-218.	2.5	103
12	Relationship between clinical signs and lung function in horses with recurrent airway obstruction (heaves) during a bronchodilator trial. Equine Veterinary Journal, 2010, 32, 393-400.	0.9	98
13	Implicating Exudate Macrophages and Ly-6Chigh Monocytes in CCR2-Dependent Lung Fibrosis following Gene-Targeted Alveolar Injury. Journal of Immunology, 2013, 190, 3447-3457.	0.4	98
14	The Role of Macrophage Inflammatory Protein- $1\hat{l}\pm/CCL3$ in Regulation of T Cell-Mediated Immunity to <i>Cryptococcus neoformans</i> li>Infection. Journal of Immunology, 2000, 165, 6429-6436.	0.4	92
15	Insights into the Mechanisms of Protective Immunity against Cryptococcus neoformans Infection Using a Mouse Model of Pulmonary Cryptococcosis. PLoS ONE, 2009, 4, e6854.	1.1	88
16	Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine, 2003, 21, 3801-3814.	1.7	85
17	Mechanisms of cryptococcal virulence and persistence. Future Microbiology, 2010, 5, 1269-1288.	1.0	83
18	X-Linked Immunodeficient Mice Exhibit Enhanced Susceptibility to Cryptococcus neoformans Infection. MBio, 2013, 4, .	1.8	83

#	Article	IF	CITATIONS
19	Interleukin-17A Enhances Host Defense against Cryptococcal Lung Infection through Effects Mediated by Leukocyte Recruitment, Activation, and Gamma Interferon Production. Infection and Immunity, 2014, 82, 937-948.	1.0	83
20	Th2 but Not Th1 Immune Bias Results in Altered Lung Functions in a Murine Model of Pulmonary <i>Cryptococcus neoformans</i> Infection. Infection and Immunity, 2009, 77, 5389-5399.	1.0	81
21	STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans. Infection and Immunity, 2015, 83, 4513-4527.	1.0	80
22	CD4 ⁺ T Cells Orchestrate Lethal Immune Pathology despite Fungal Clearance during <i>Cryptococcus neoformans</i> Meningoencephalitis. MBio, 2017, 8, .	1.8	78
23	Inheritance of Immune Polarization Patterns Is Linked to Resistance versus Susceptibility to <i>Cryptococcus neoformans</i> i>in a Mouse Model. Infection and Immunity, 2008, 76, 2379-2391.	1.0	77
24	Role of Granulocyte Macrophage Colony-Stimulating Factor in Host Defense Against Pulmonary Cryptococcus neoformans Infection during Murine Allergic Bronchopulmonary Mycosis. American Journal of Pathology, 2007, 170, 1028-1040.	1.9	72
25	<i>Cryptococcus neoformans–</i> Induced Macrophage Lysosome Damage Crucially Contributes to Fungal Virulence. Journal of Immunology, 2015, 194, 2219-2231.	0.4	68
26	Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice. PLoS ONE, 2012, 7, e47853.	1.1	66
27	STAT1 Signaling Is Essential for Protection against <i>Cryptococcus neoformans</i> Infection in Mice. Journal of Immunology, 2014, 193, 4060-4071.	0.4	66
28	Chemokine Receptor 2-Mediated Accumulation of Fungicidal Exudate Macrophages in Mice That Clear Cryptococcal Lung Infection. American Journal of Pathology, 2011, 178, 198-211.	1.9	65
29	PAIâ€1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. Journal of Pathology, 2012, 228, 170-180.	2.1	64
30	Regulatory Effects of Macrophage Inflammatory Protein $1\hat{l}\pm/CCL3$ on the Development of Immunity to Cryptococcus neoformans Depend on Expression of Early Inflammatory Cytokines. Infection and Immunity, 2001, 69, 6256-6263.	1.0	58
31	TLR9 Signaling Is Required for Generation of the Adaptive Immune Protection in Cryptococcus neoformans-Infected Lungs. American Journal of Pathology, 2010, 177, 754-765.	1.9	50
32	Early or Late IL-10 Blockade Enhances Th1 and Th17 Effector Responses and Promotes Fungal Clearance in Mice with Cryptococcal Lung Infection. Journal of Immunology, 2014, 193, 4107-4116.	0.4	47
33	Early Induction of CCL7 Downstream of TLR9 Signaling Promotes the Development of Robust Immunity to Cryptococcal Infection. Journal of Immunology, 2012, 188, 3940-3948.	0.4	43
34	Cryptococcal Heat Shock Protein 70 Homolog Ssa1 Contributes to Pulmonary Expansion of <i>Cryptococcus neoformans</i> during the Afferent Phase of the Immune Response by Promoting Macrophage M2 Polarization. Journal of Immunology, 2015, 194, 5999-6010.	0.4	41
35	Anti–PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice. Journal of Immunology, 2017, 199, 3535-3546.	0.4	40
36	Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. Journal of Immunology, 2017, 198, 3548-3557.	0.4	39

3

#	Article	IF	Citations
37	Leukocyte recruitment during pulmonary Cryptococcus neoformans infection. Immunopharmacology, 2000, 48, 231-236.	2.0	37
38	Local GM-CSF–Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice. Journal of Immunology, 2016, 196, 1810-1821.	0.4	32
39	Scavenger Receptor A Modulates the Immune Response to PulmonaryCryptococcus neoformansInfection. Journal of Immunology, 2013, 191, 238-248.	0.4	31
40	Chemokine receptor CXCR3 is required for lethal brain pathology but not pathogen clearance during cryptococcal meningoencephalitis. Science Advances, 2020, 6, eaba2502.	4.7	27
41	Virulence Factors Identified by Cryptococcus neoformans Mutant Screen Differentially Modulate Lung Immune Responses and Brain Dissemination. American Journal of Pathology, 2012, 181, 1356-1366.	1.9	25
42	Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection. MBio, 2016, 7, .	1.8	24
43	Role of CC Chemokine Receptor 4 in Natural Killer Cell Activation during Acute Cigarette Smoke Exposure. American Journal of Pathology, 2014, 184, 454-463.	1.9	22
44	T Cell–Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during <i>Cryptococcus neoformans</i> Infection. Journal of Immunology, 2017, 199, 643-655.	0.4	19
45	Role of dendritic cell–pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiology, 2015, 10, 1837-1857.	1.0	18
46	Autocrine IL-10 Signaling Promotes Dendritic Cell Type-2 Activation and Persistence of Murine Cryptococcal Lung Infection. Journal of Immunology, 2018, 201, 2004-2015.	0.4	18
47	CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis. MBio, 2020, 11, .	1.8	18
48	Mediators of anaphylaxis but not activated neutrophils augment cholinergic responses of equine small airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L522-L529.	1.3	17
49	Effect of Laparotomy on Clearance and Cytokine Induction in <i>Staphylococcus aureus</i> Àe"infected Lungs. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 921-929.	2.5	17
50	Induction of Protective Immunity Against Cryptococcosis. Mycopathologia, 2012, 173, 387-394.	1.3	17
51	Epigenetic stabilization of DC and DC precursor classical activation by TNF $\hat{I}\pm$ contributes to protective T cell polarization. Science Advances, 2019, 5, eaaw9051.	4.7	17
52	Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b+ Conventional Dendritic Cells and Non-Protective Th2 Bias. Frontiers in Immunology, 2017, 8, 1231.	2.2	16
53	TNF-α-Producing Cryptococcus neoformans Exerts Protective Effects on Host Defenses in Murine Pulmonary Cryptococcosis. Frontiers in Immunology, 2019, 10, 1725.	2.2	16
54	Notch signaling contributes to the expression of inflammatory cytokines induced by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection in porcine alveolar macrophages. Developmental and Comparative Immunology, 2020, 108, 103690.	1.0	15

#	Article	IF	CITATIONS
55	Immunoregulation in Fungal Diseases. Microorganisms, 2016, 4, 47.	1.6	14
56	Sho1 and Msb2 Play Complementary but Distinct Roles in Stress Responses, Sexual Differentiation, and Pathogenicity of Cryptococcus neoformans. Frontiers in Microbiology, 2018, 9, 2958.	1.5	14
57	Cryptococcus neoformans Growth and Protection from Innate Immunity Are Dependent on Expression of a Virulence-Associated DEAD-Box Protein, Vad1. Infection and Immunity, 2013, 81, 777-788.	1.0	13
58	Molecules at the interface of Cryptococcus and the host that determine disease susceptibility. Fungal Genetics and Biology, 2015, 78, 87-92.	0.9	13
59	CCR2 Signaling Promotes Brain Infiltration of Inflammatory Monocytes and Contributes to Neuropathology during Cryptococcal Meningoencephalitis. MBio, 2021, 12, e0107621.	1.8	12
60	Pre- and postjunctional effects of inflammatory mediators in horse airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L327-L333.	1.3	11
61	Dual Roles of CD40 on Microbial Containment and the Development of Immunopathology in Response to Persistent Fungal Infection in the Lung. American Journal of Pathology, 2010, 177, 2459-2471.	1.9	11
62	Validation of a High-Throughput Multiplex Genetic Detection System for Helicobacter pylori Identification, Quantification, Virulence, and Resistance Analysis. Frontiers in Microbiology, 2016, 7, 1401.	1.5	11
63	Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Frontiers in Microbiology, 2016, 7, 1652.	1.5	10
64	In vitro responses of equine small airways and lung parenchyma. Respiration Physiology, 1997, 109, 167-176.	2.8	9
65	RIPK3/Fas-Associated Death Domain Axis Regulates Pulmonary Immunopathology to Cryptococcal Infection Independent of Necroptosis. Frontiers in Immunology, 2017, 8, 1055.	2.2	9
66	Murine Inducible Nitric Oxide Synthase Expression Is Essential for Antifungal Defenses in Kidneys during Disseminated <i>Cryptococcus deneoformans</i> Infection. Journal of Immunology, 2021, 207, 2096-2106.	0.4	8
67	Mechanism of capsaicin-induced relaxation in equine tracheal smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L997-L1001.	1.3	7
68	A high-throughput multiplex genetic detection system for <i>Helicobacter pylori</i> identification, virulence and resistance analysis. Future Microbiology, 2016, 11, 1261-1278.	1.0	7
69	Clinical application of a multiplex genetic pathogen detection system remaps the aetiology of diarrhoeal infections in Shanghai. Gut Pathogens, 2018, 10, 37.	1.6	6
70	Phagocytic Activity of Polymorphonuclear Leukocytes Lavaged from the Lungs of Horses with Clinically Diagnosed Chronic Pulmonary Disease. Transboundary and Emerging Diseases, 1994, 41, 558-567.	0.6	5
71	Direct detection ofHelicobacter pyloriin biopsy specimens using a high-throughput multiple genetic detection system. Future Microbiology, 2016, 11, 1521-1534.	1.0	5
72	Expression profile of porcine scavenger receptor A and its role in bacterial phagocytosis by macrophages. Developmental and Comparative Immunology, 2020, 104, 103534.	1.0	5

#	Article	IF	CITATIONS
73	CD11c+ Cells Are Required to Prevent Progression from Local Acute Lung Injury to Multiple Organ Failure and Death. American Journal of Pathology, 2010, 176, 218-226.	1.9	4
74	Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines, 2021, 9, 234.	2.1	4
75	730â€Histotripsy focused ultrasound ablation induces immunological cell death in treated and distant untreated tumors. , 2020, , .		4
76	Genomic population structure of <i>Helicobacter pylori</i> Shanghai isolates and identification of genomic features uniquely linked with pathogenicity. Virulence, 2021, 12, 1258-1270.	1.8	3
77	Th1, Th2, and Beyond: What We Know About Adaptive Immunity for Fungal Infections. International Journal of Clinical Reviews, 0, , .	0.1	1
78	Classically-activated CD11c+ CD11b+ Exudate Macrophages Are Derived From Recruited Ly6C-high CD11b+ Monocytes In The Lungs Of Mice With Fungal Pneumonia. , 2010, , .		0
79	Dendritic Cells Derived From Recruited Ly6C-high Monocytes Promote T1 Immune Responses Within The Lungs Of Mice Infected With A Fungal Pathogen. , 2010, , .		0
80	INTERPLAY OF CD40-DEPENDENT AND INDEPENDENT MECHANISMS IN THE PATHOGENESIS OF MURINE ALLERGIC BRONCHOPULMONARY MYCOSIS. , 2010, , .		0
81	Immune Reconstitution Disease In Crytococcus Neoformans-Infected Mice Associated With An Imbalance Between Inflammatory And Regulatory Cytokines. , $2011,\ldots$		0
82	Failed Containment Of Fungal Lung Infection In Gm-Csf Deficient Mice Is Associated With Impaired Accumulation And Differentiation Of Alveolar And Exudate Macrophages. , 2011, , .		0
83	TLR9 Facilitates Protective Immunity To Cryptococcus Neoformans By Supporting Early Production Of MCP3/5 And The Accumulation Of Ly6c+ Monocytes And DC In The Lungs. , 2011, , .		0
84	Changes In Cytokine Microenvironments Dynamically Alter M1/M2 Macrophage Polarization In Opportunistic Fungal Infection. , 2012, , .		0
85	Identification Of Early (Dendritic Cell) And Late (CD4+ T Cell) Sources Of IL-10 Production In Mice With Persistent Cryptococcal Lung Infection. , 2012, , .		0
86	Fungal Pathogen Exploits Scavenger Receptor A To Promote A Non-Protective Immune Response In The Infected Lungs. , 2012, , .		0
87	Critical Role Of GM-CSF In The Local Differentiation Of CD11b+ Dendritic Cells And Exudate Macrophages From Ly-6C(High) Monocytes In Mice With Persistent Cryptococcal Lung Infection. , 2012, , .		0
88	Pulmonary Fibrosis Resultant From Targeted Type II Alveolar Epithelial Cell Injury Is CCR2-Dependent And Characterized By The Accumulation Of Collagen-Producing Exudate Macrophages And Ly-6C(High) Monocytes., 2012,,.		0
89	PAI-1 Promotes The Accumulation Of Exudate Macrophages And Worsens Pulmonary Fibrosis Following Type II Alveolar Epithelial Cell Injury. , 2012, , .		0
90	Host Immune Responses Against Pulmonary Fungal Pathogens. , 2012, , .		0

ARTICLE IF CITATIONS
91 Cryptococcus neoformans-Host Interactions Determine Disease Outcomes., 0,,... 0