Do-Yeon Kim Ph D

List of Publications by Citations

Source: https://exaly.com/author-pdf/11843859/do-yeon-kim-ph-d-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

963 19 30 30 h-index g-index citations papers 1,089 7.6 30 3.75 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
30	Self-Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying. <i>Advanced Functional Materials</i> , 2014 , 24, 4986-4995	15.6	131
29	Self-Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. <i>Advanced Materials</i> , 2016 , 28, 7149-54	24	120
28	Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6677-6	68 5	79
27	Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates. <i>Journal of Thermal Spray Technology</i> , 2013 , 22, 1092-1102	2.5	50
26	Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling. International Journal of Heat and Mass Transfer, 2016 , 98, 124-130	4.9	43
25	Production of Flexible Transparent Conducting Films of Self-Fused Nanowires via One-Step Supersonic Spraying. <i>Advanced Functional Materials</i> , 2017 , 27, 1602548	15.6	43
24	Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition. <i>ACS Applied Materials & Distributed & Di</i>	9.5	43
23	Self-cleaning superhydrophobic films by supersonic-spraying polytetrafluoroethylenelitania nanoparticles. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3975-3983	13	41
22	Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells. <i>ACS Applied Materials & Double Selection Solar Cells.</i> 7, 19043-9	9.5	41
21	Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes. <i>ACS Applied Materials & Efficient Photocathodes</i> . <i>ACS Applied Materials & Efficient Photocathodes</i> .	9.5	31
20	GrapheneEitania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells. <i>Ceramics International</i> , 2014 , 40, 11089-11097	5.1	31
19	Antibacterial and water purification activities of self-assembled honeycomb structure of aerosol deposited titania film. <i>Environmental Science & Environmental & Envi</i>	10.3	30
18	Supersonic cold spraying for zeolitic metalBrganic framework films. <i>Chemical Engineering Journal</i> , 2016 , 295, 49-56	14.7	29
17	Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification. <i>Nanoscale</i> , 2015 , 7, 19027-35	7.7	28
16	Nickellopper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray. <i>Acta Materialia</i> , 2015 , 93, 156-163	8.4	27
15	Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications. <i>Journal of Thermal Spray Technology</i> , 2011 , 20, 1085-1097	2.5	24
14	Superhydrophilic Transparent Titania Films by Supersonic Aerosol Deposition. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1596-1601	3.8	23

LIST OF PUBLICATIONS

13	Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide. <i>Electrochimica Acta</i> , 2017 , 228, 604-	670	21	
12	Supersonic aerosol-deposited TiO2 photoelectrodes for photoelectrochemical solar water splitting. RSC Advances, 2014 , 4, 8661-8670	3.7	19	
11	Thin film metallization by supersonic spraying of copper and nickel nanoparticles on a silicon substrate. <i>Computational Materials Science</i> , 2015 , 108, 114-120	3.2	17	
10	Supersonically Sprayed CopperNickel Microparticles as Flexible and Printable Thin-Film High-Temperature Heaters. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700075	4.6	14	
9	Rapid supersonic spraying of Cu(In,Ga)(S,Se)2 nanoparticles to fabricate a solar cell with 5.49% conversion efficiency. <i>Acta Materialia</i> , 2017 , 123, 44-54	8.4	13	
8	Tuning Hydrophobicity with Honeycomb Surface Structure and Hydrophilicity with CF4 Plasma Etching for Aerosol-Deposited Titania Films. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 3955-396	5 3 .8	13	
7	Supersonically sprayed thermal barrier layers using clay micro-particles. <i>Applied Clay Science</i> , 2016 , 120, 142-146	5.2	10	
6	Graphenellitania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3660-3668	3.8	9	
5	Electrically Insulative Performances of Ceramic and Clay Films Deposited via Supersonic Spraying. Journal of Thermal Spray Technology, 2016 , 25, 763-769	2.5	8	
4	Efficient heat removal via thorny devil nanofiber, silver nanowire, and graphene nanotextured surfaces. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 101, 198-204	4.9	8	
3	Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition. <i>Journal of Thermal Spray Technology</i> , 2015 , 24, 1046-1051	2.5	8	
2	Wettability and photocatalysis of CF4 plasma etched titania films of honeycomb structure. <i>Ceramics International</i> , 2013 , 39, 9737-9742	5.1	5	
1	Tuning crystalline structure of zeolitic metalBrganic frameworks by supersonic spraying of precursor nanoparticle suspensions. <i>Materials and Design</i> , 2017 , 114, 416-423	8.1	4	