
Ghanshyam L Vaghjiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1184311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iridium catalyst detection by laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 187, 106327.	1.5	2
2	Thermal and Catalytic Decomposition of 2-Hydroxyethylhydrazine and 2-Hydroxyethylhydrazinium Nitrate Ionic Liquid. Journal of Physical Chemistry A, 2022, 126, 373-394.	1.1	4
3	Structures, proton transfer and dissociation of hydroxylammonium nitrate (HAN) revealed by electrospray ionization tandem mass spectrometry and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 14033-14043.	1.3	4
4	Study of the Reaction of Hydroxylamine with Iridium Atomic and Cluster Anions (n = $1\hat{a}\in$ 5). Journal of Physical Chemistry A, 2021, 125, 5922-5932.	1.1	6
5	Experimental and Theoretical Investigations of the Radical–Radical Reaction: N ₂ H ₃ + NO ₂ . Journal of Physical Chemistry A, 2020, 124, 10434-10446.	1.1	2
6	Molecular Dynamics Simulations, Reaction Pathway and Mechanism Dissection, and Kinetics Modeling of the Nitric Acid Oxidation of Dicyanamide and Dicyanoborohydride Anions. Journal of Physical Chemistry B, 2020, 124, 11175-11188.	1.2	6
7	Ionic Liquid Clusters Generated from Electrospray Thrusters: Cold Ion Spectroscopic Signatures of Size-Dependent Acid–Base Interactions. Journal of Physical Chemistry A, 2020, 124, 10507-10516.	1.1	9
8	Molecular Dynamics Simulations and Product Vibrational Spectral Analysis for the Reactions of NO ₂ with 1-Ethyl-3-methylimidazolium Dicyanamide (EMIM ⁺ DCA [–]), 1-Butyl-3-methylimidazolium Dicyanamide (BMIM ⁺ DCA [–]), and 1-Allyl-3-methylimidazolium Dicyanamide (AMIM ⁺ DCA [–]). Journal of Physical Chemistry B, 2020, 124, 4303-4325.	1.2	7
9	Two-stage decomposition of 2-hydroxyethylhydrazinium nitrate (HEHN). Combustion and Flame, 2020, 220, 1-6.	2.8	6
10	Thermal Decomposition and Hypergolic Reaction of a Dicyanoborohydride Ionic Liquid. Journal of Physical Chemistry A, 2020, 124, 864-874.	1.1	10
11	<i>Ab Initio</i> Kinetics of Methylamine Radical Thermal Decomposition and H-Abstraction from Monomethylhydrazine by H-Atom. Journal of Physical Chemistry A, 2020, 124, 3747-3753.	1.1	5
12	Thermal Decomposition of Hydroxylammonium Nitrate: ReaxFF Training Set Development for Molecular Dynamics Simulations. , 2019, , .		2
13	Computational Study of the Reaction of 1-Methyl-4-amino-1,2,4-triazolium Dicyanamide with NO ₂ : From Reaction Dynamics to Potential Surfaces, Kinetics and Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 2956-2970.	1.2	8
14	Ignition Delay Reduction with Sodium Addition to Imidazolium-Based Dicyanamide Ionic Liquid. Journal of Physical Chemistry A, 2019, 123, 10-14.	1.1	11
15	Combustion Behavior of High Energy Density Borane–Aluminum Nanoparticles in Hypergolic Ionic Liquids. Energy & Fuels, 2018, 32, 7898-7908.	2.5	10
16	Temperature Jump Pyrolysis Studies of RP-2 Fuel. , 2017, , .		0
17	Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation. Journal of Physical Chemistry Letters, 2017, 8, 2126-2130.	2.1	33
18	Method for predicting hypergolic mixture flammability limits: Application for non-ionic liquid based systems. Combustion and Flame. 2017. 176. 547-553.	2.8	4

#	Article	IF	CITATIONS
19	Spectroscopic Investigation of the Primary Reaction Intermediates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 6053-6059.	2.1	17
20	Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry. Journal of Physical Chemistry A, 2016, 120, 8011-8023.	1.1	28
21	Anab initioBased Structure Property Relationship for Prediction of Ignition Delay of Hypergolic Ionic Liquids. Propellants, Explosives, Pyrotechnics, 2015, 40, 759-764.	1.0	14
22	Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret. Journal of Chemical Physics, 2015, 142, 204301.	1.2	1
23	Binding of Alkenes and Ionic Liquids to B–H-Functionalized Boron Nanoparticles: Creation of Particles with Controlled Dispersibility and Minimal Surface Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 9991-10003.	4.0	29
24	Molecular Orbital Based Design Guideline for Hypergolic Ionic Liquids. Propellants, Explosives, Pyrotechnics, 2015, 40, 144-149.	1.0	15
25	Dynamics Simulations and Statistical Modeling of Thermal Decomposition of 1-Ethyl-3-methylimidazolium Dicyanamide and 1-Ethyl-2,3-dimethylimidazolium Dicyanamide. Journal of Physical Chemistry A, 2014, 118, 11133-11144.	1.1	17
26	Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with Cyano-Functionalized Anions. Journal of Physical Chemistry A, 2014, 118, 11119-11132.	1.1	49
27	Direct Dynamics Simulation of the Activation and Dissociation of 1,5-Dinitrobiuret (HDNB). Journal of Physical Chemistry A, 2014, 118, 2228-2236.	1.1	12
28	Helium Nanodroplet Isolation and Infrared Spectroscopy of the Isolated Ion-Pair 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Physical Chemistry A, 2013, 117, 9047-9056.	1.1	34
29	Ultraviolet Photoionization Efficiency of the Vaporized Ionic Liquid 1-Butyl-3-methylimidazolium Tricyanomethanide: Direct Detection of the Intact Ion Pair. Journal of Physical Chemistry Letters, 2012, 3, 2910-2914.	2.1	17
30	Thermal Decomposition Mechanism of 1-Ethyl-3-methylimidazolium Bromide Ionic Liquid. Journal of Physical Chemistry A, 2012, 116, 5867-5876.	1.1	57
31	Chemical kinetics interpretation of hypergolicity of dicyanamide ionic liquid-based systems. Combustion and Flame, 2012, 159, 1759-1768.	2.8	21
32	Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry. Journal of Physical Chemistry Letters, 2011, 2, 874-879.	2.1	9
33	Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols. Journal of Physical Chemistry A, 2011, 115, 4630-4635.	1.1	23
34	Thermal Decomposition of 1,5-Dinitrobiuret (DNB): Direct Dynamics Trajectory Simulations and Statistical Modeling. Journal of Physical Chemistry A, 2011, 115, 8064-8072.	1.1	11
35	Generation of Melamine Polymer Condensates upon Hypergolic Ignition of Dicyanamide Ionic Liquids. Angewandte Chemie - International Edition, 2011, 50, 8634-8637.	7.2	38
36	Tunable Wavelength Soft Photoionization of Ionic Liquid Vapors. Journal of Physical Chemistry A, 2010, 114, 879-883.	1.1	29

Ghanshyam L Vaghjiani

#	Article	IF	CITATIONS
37	Heats of Vaporization of Room Temperature Ionic Liquids by Tunable Vacuum Ultraviolet Photoionization. Journal of Physical Chemistry B, 2010, 114, 1361-1367.	1.2	49
38	Resonant Laser Ignition Study of HAN-HEHN Propellant Mixture. Combustion Science and Technology, 2009, 181, 902-913.	1.2	11
39	Thermochemistry of Species Potentially Formed During NTO/MMH Hypergolic Ignition. Propellants, Explosives, Pyrotechnics, 2008, 33, 209-212.	1.0	30
40	Ionic Liquids as Hypergolic Fuels. Energy & Fuels, 2008, 22, 2871-2872.	2.5	308
41	Liquid Azide Salts and Their Reactions with Common Oxidizers IRFNA and N ₂ O ₄ . Inorganic Chemistry, 2008, 47, 6082-6089.	1.9	63
42	Fourier Transform Infrared Studies in Hypergolic Ignition of Ionic Liquids. Journal of Physical Chemistry A, 2008, 112, 7816-7824.	1.1	123
43	Highly accurate ignition delay apparatus for hypergolic fuel research. Review of Scientific Instruments, 2006, 77, 045109.	0.6	21
44	248-nm Laser Photolysis of CHBr3/O-Atom Mixtures:Â Kinetic Evidence for UV CO(A) Chemiluminescence in the Reaction of Methylidyne Radicals with Atomic Oxygen. Journal of Physical Chemistry A, 2005, 109, 2197-2206.	1.1	0
45	Kinetics of CH radicals with O2: Evidence for CO chemiluminescence in the gas phase reaction. Journal of Chemical Physics, 2003, 119, 5388-5396.	1.2	11
46	Investigations of chemiluminescence in the CH2 + O gas phase reaction. , 2001, , .		0
47	Gas Phase Reaction Kinetics of O Atoms with (CH3)2NNH2, CH3NHNH2, and N2H4, and Branching Ratios of the OH Product. Journal of Physical Chemistry A, 2001, 105, 4682-4690.	1.1	21
48	Kinetics of OH reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the gas phase. International Journal of Chemical Kinetics, 2001, 33, 354-362.	1.0	14
49	OH(OD) + CO: Measurements and an Optimized RRKM Fit. Journal of Physical Chemistry A, 1998, 102, 8598-8606.	1.1	120
50	Reaction kinetics of O(3P) and OH with diamine rocket fuels. , 1998, , .		0
51	UV Absorption Cross Sections, Laser Photodissociation Product Quantum Yields, and Reactions of H Atoms with Methylhydrazines at 298 K. Journal of Physical Chemistry A, 1997, 101, 4167-4171.	1.1	23
52	Rate Coefficients for the Reactions of Hydroxyl Radicals with Methane and Deuterated Methanes. Journal of Physical Chemistry A, 1997, 101, 3125-3134.	1.1	135
53	Discharge flowâ€ŧube studies of O(3P)+N2H4 reaction: The rate coefficient values over the temperature range 252–423 K and the OH(X 2Î) product yield at 298 K. Journal of Chemical Physics, 1996, 104, 5479-54	489. 	20
54	Laser photolysis studies of hydrazine vapor: 193 and 222-nm H-atom primary quantum yields at 296 K, and the kinetics of H + N2H4 reaction over the temperature range 222-657 K. International Journal of Chemical Kinetics, 1995, 27, 777-790.	1.0	36

#	Article	IF	CITATIONS
55	Ultraviolet absorption cross sections for N2H4vapor between 191–291 nm and H(2S) quantum yield in 248 nm photodissociation at 296 K. Journal of Chemical Physics, 1993, 98, 2123-2131.	1.2	34
56	CH3SH ultraviolet absorption cross sections in the region 192.5–309.5 nm and photodecomposition at 222 and 193 nm and 296 K. Journal of Chemical Physics, 1993, 99, 5936-5943.	1.2	46
57	Photodissociation of HNO3 at 193, 222, and 248 nm: Products and quantum yields. Journal of Chemical Physics, 1992, 96, 5887-5895.	1.2	66
58	Photodissociation of H2O2 at 193 and 222 nm: Products and quantum yields. Journal of Chemical Physics, 1992, 96, 5878-5886.	1.2	48
59	Photodissociation of bromocarbons at 193, 222, and 248 nm: Quantum yields of Br atom at 298 K. Journal of Chemical Physics, 1992, 96, 8194-8201.	1.2	42
60	Atmospheric fate of CF ₃ Br, CF ₂ Br ₂ , CF ₂ ClBr, and CF ₂ BrCF ₂ BR. Journal of Geophysical Research, 1991, 96, 5025-5043.	3.3	53
61	Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH. Journal of Geophysical Research, 1991, 96, 5001-5011.	3.3	52
62	New measurement of the rate coefficient for the reaction of OH with methane. Nature, 1991, 350, 406-409.	13.7	217
63	The photochemistry of ozone at 193 and 222 nm. Journal of Chemical Physics, 1991, 95, 3244-3251.	1.2	78
64	The rate coefficient for the reaction of O(3P) with CH3OOH at 297 K. International Journal of Chemical Kinetics, 1990, 22, 351-358.	1.0	9
65	Photodissociation of H2O2 and CH3OOH at 248 nm and 298 K: Quantum yields for OH, O(3P) and H(2S). Journal of Chemical Physics, 1990, 92, 996-1003.	1.2	118
66	Reaction probabilities, cross sections, and threshold energies in the reaction of isotopically pure H atoms and nâ€butane. Journal of Chemical Physics, 1989, 91, 5121-5123.	1.2	10
67	Absorption cross sections of CH ₃ OOH, H ₂ O ₂ , and D ₂ O ₂ vapors between 210 and 365 nm at 297 K. Journal of Geophysical Research, 1989, 94, 3487-3492.	3.3	99
68	Kinetics and mechanism of hydroxyl radical reaction with methyl hydroperoxide. The Journal of Physical Chemistry, 1989, 93, 1948-1959.	2.9	183
69	Reactions of hydroxyl and hydroxyl-d with hydrogen peroxide and hydrogen peroxide-d2. The Journal of Physical Chemistry, 1989, 93, 7833-7837.	2.9	45
70	Reaction cross sections and threshold energy in the reaction of isotopically pure H atoms and ethane. Journal of Chemical Physics, 1988, 89, 3388-3389.	1.2	8
71	Quenching of OD (A 2Σ+,v′=0 and 1) by various gases. Journal of Chemical Physics, 1987, 87, 7050-7058.	1.2	15
72	Reaction probabilities and cross-sections in the reaction of isotopically pure hydrogen atoms and propane. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 607.	1.1	12

#	Article	IF	CITATIONS
73	Reaction probabilities for the reactions of hydrogen atoms at selected initial energies in hydrogen iodide–iodine mixtures. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 737-743.	1.1	1
74	Reaction probabilities and threshold energy in the reaction of isotopically pure hydrogen atoms and ethane. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 1945.	1.1	3