Yeonsu Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11840404/publications.pdf

Version: 2024-02-01

471061 552369 26 1,143 17 26 h-index citations g-index papers 26 26 26 1574 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	All-in-one flexible supercapacitor with ultrastable performance under extreme load. Science Advances, 2022, 8, eabl8631.	4.7	55
2	Self-powered and flexible integrated solid-state fiber-shaped energy conversion and storage based on CNT Yarn with efficiency of 5.5%. Nano Energy, 2022, 96, 107054.	8.2	11
3	A universal surface modification method of carbon nanotube fibers with enhanced tensile strength. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106182.	3.8	27
4	Hydrophilic treatment for strong carbon nanotube fibers. Functional Composites and Structures, 2021, 3, 025002.	1.6	8
5	One step "growth to spinning―of biaxially multilayered CNT web electrode for long cycling Li–O2 batteries. Carbon, 2021, 182, 318-326.	5.4	7
6	Mechanical Properties and Epoxy Resin Infiltration Behavior of Carbon-Nanotube-Fiber-Based Single-Fiber Composites. Materials, 2021, 14, 106.	1.3	10
7	Hydrophilic and Conductive Carbon Nanotube Fibers for High-Performance Lithium-Ion Batteries. Materials, 2021, 14, 7822.	1.3	5
8	High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet. ACS Applied Energy Materials, 2020, 3, 1199-1206.	2.5	43
9	Enhancing the cycle stability of Li–O ₂ batteries <i>via</i> functionalized carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2020, 8, 4263-4273.	5.2	15
10	Direct spinning and densification method for high-performance carbon nanotube fibers. Nature Communications, 2019, 10, 2962.	5.8	126
11	Versatile reorganization of metal-polyphenol coordination on CNTs for dispersion, assembly, and transformation. Carbon, 2019, 144, 402-409.	5.4	10
12	How can we make carbon nanotube yarn stronger?. Composites Science and Technology, 2018, 166, 95-108.	3.8	66
13	Metal–Phenolic Carbon Nanocomposites for Robust and Flexible Energyâ€Storage Devices. ChemSusChem, 2017, 10, 1675-1682.	3.6	30
14	High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon, 2017, 118, 413-421.	5.4	83
15	Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano, 2017, 11, 7608-7614.	7.3	191
16	High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale, 2016, 8, 18972-18979.	2.8	46
17	One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries. Energy Storage Materials, 2016, 5, 1-7.	9.5	34
18	Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper. ACS Nano, 2016, 10, 2184-2192.	7.3	62

YEONSU JUNG

#	Article	lF	CITATIONS
19	Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon, 2015, 88, 60-69.	5.4	105
20	Easy Preparation of Readily Self-Assembled High-Performance Graphene Oxide Fibers. Chemistry of Materials, 2014, 26, 5549-5555.	3.2	52
21	Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chemical Engineering Journal, 2013, 228, 1050-1056.	6.6	37
22	Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns. Materials Letters, 2013, 92, 177-180.	1.3	24
23	Carbon nanotube/poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning. Fibers and Polymers, 2012, 13, 874-879.	1.1	13
24	High-performance field emission from a carbon nanotube carpet. Carbon, 2012, 50, 3889-3896.	5.4	49
25	Fabrication and Applications of Carbon Nanotube Fibers. Carbon Letters, 2012, 13, 191-204.	3.3	32
26	Polypropylene/carbon nanotube composites prepared with a environmentally benign processes. Journal of Applied Polymer Science, 2010, 118, 1335-1340.	1.3	2