Yu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11839977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stapled Liposomes Enhance Crossâ€Priming of Radioâ€Immunotherapy. Advanced Materials, 2022, 34, e2107161.	21.0	19
2	Immune modulating nanoparticles depleting tumor-associated macrophages to enhance immune checkpoint blockade therapy. Chemical Engineering Journal, 2022, 435, 134779.	12.7	9
3	Tailoring a Nanochaperone to Regulate α‣ynuclein Assembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
4	Spatial Distribution Control of Antimicrobial Peptides through a Novel Polymeric Carrier for Safe and Efficient Cancer Treatment. Advanced Materials, 2022, 34, e2201945.	21.0	13
5	Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils. Science China Chemistry, 2022, 65, 353-362.	8.2	4
6	A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
7	A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angewandte Chemie, 2022, 134, .	2.0	4
8	Macrocyclicâ€Amphiphileâ€Based Selfâ€Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors. Advanced Materials, 2021, 33, e2007719.	21.0	61
9	Calixareneâ€Embedded Nanoparticles for Interferenceâ€Free Gene–Drug Combination Cancer Therapy. Small, 2021, 17, e2006223.	10.0	24
10	Cargoâ€Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000078.	3.6	9
11	An Antibody-like Polymeric Nanoparticle Removes Intratumoral Galectin-1 to Enhance Antitumor T-Cell Responses in Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 22159-22168.	8.0	14
12	Neuroprotective Nanoscavenger Induces Coaggregation of β-Amyloid and Facilitates Its Clearance in Alzheimer's Disease Brain. CCS Chemistry, 2021, 3, 2316-2330.	7.8	15
13	Coassembly of Macrocyclic Amphiphiles for Anti-β-Amyloid Therapy of Alzheimer's Disease. CCS Chemistry, 2021, 3, 2485-2497.	7.8	26
14	Bi-specific macrophage nano-engager for cancer immunotherapy. Nano Today, 2021, 41, 101313.	11.9	15
15	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, .	11.0	156
16	Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275.	11.4	81
17	COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale, 2020, 12, 21218-21224.	5.6	25
18	Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Applied Bio Materials, 2020, 3, 4635-4642.	4.6	15

Үи Zhao

#	Article	IF	CITATIONS
19	Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms. Journal of Materials Chemistry B, 2020, 8, 4395-4401.	5.8	27
20	Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nature Communications, 2020, 11, 594.	12.8	87
21	Bioinspired Heteromultivalent Ligand-Decorated Nanotherapeutic for Enhanced Photothermal and Photodynamic Therapy of Antibiotic-Resistant Bacterial Pneumonia. ACS Applied Materials & Interfaces, 2019, 11, 39648-39661.	8.0	35
22	NanoRNP Overcomes Tumor Heterogeneity in Cancer Treatment. Nano Letters, 2019, 19, 7662-7672.	9.1	45
23	Dualâ€Locking Nanoparticles Disrupt the PDâ€1/PDâ€L1 Pathway for Efficient Cancer Immunotherapy. Advanced Materials, 2019, 31, e1905751.	21.0	95
24	Polymeric Nanomedicine. , 2019, , 233-267.		1
25	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	11.3	126
26	In Situ Modification of the Tumor Cell Surface with Immunomodulating Nanoparticles for Effective Suppression of Tumor Growth in Mice. Advanced Materials, 2019, 31, e1902542.	21.0	58
27	Phosphorylcholine-Based Polymer Encapsulated Chitosan Nanoparticles Enhance the Penetration of Antimicrobials in a Staphylococcal Biofilm. ACS Macro Letters, 2019, 8, 651-657.	4.8	46
28	A Biomimetic Nonâ€Antibiotic Approach to Eradicate Drugâ€Resistant Infections. Advanced Materials, 2019, 31, e1806024.	21.0	131
29	Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals. Advanced Materials, 2019, 31, e1805148.	21.0	123
30	Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of β-Amyloid Aggregates in Alzheimer's Disease Mice. Nano Letters, 2019, 19, 674-683.	9.1	124
31	Metal–Organic Frameworks: Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970012.	21.0	2
32	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	11.2	128
33	Near-Infrared Light-Activated Thermosensitive Liposomes as Efficient Agents for Photothermal and Antibiotic Synergistic Therapy of Bacterial Biofilm. ACS Applied Materials & Interfaces, 2018, 10, 14426-14437.	8.0	121
34	Recent Advances in Self-assembled Nano-therapeutics. Chinese Journal of Polymer Science (English) Tj ETQq0 0	0 rgBT /Ον	erlggk 10 Tf :

35	Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 2018, 42, 1316-1325.	2.8	8
36	Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. Journal of Biomolecular NMR, 2018, 70, 77-92.	2.8	11

Үи Zhao

#	Article	IF	CITATIONS
37	A Water-Soluble Galactose-Decorated Cationic Photodynamic Therapy Agent Based on BODIPY to Selectively Eliminate Biofilm. Biomacromolecules, 2018, 19, 141-149.	5.4	39
38	Glycomimetic-Conjugated Photosensitizer for Specific <i>Pseudomonas aeruginosa</i> Recognition and Targeted Photodynamic Therapy. Bioconjugate Chemistry, 2018, 29, 3222-3230.	3.6	29
39	Nonabsorbable polysaccharide-functionalized polyethylenimine for inhibiting lipid absorption. Carbohydrate Polymers, 2018, 197, 57-65.	10.2	5
40	Structure–Activity Relationship of Membrane-Targeting Cationic Ligands on a Silver Nanoparticle Surface in an Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay. ACS Applied Materials & Interfaces, 2017, 9, 13837-13848.	8.0	43
41	Functional Silver Nanocomposites as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents. ACS Applied Materials & Interfaces, 2017, 9, 16834-16847.	8.0	62
42	Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 30470-30479.	8.0	128
43	Synthesis, insecticidal activities and structure–activity relationship study of dual chiral sulfilimines. Molecular Diversity, 2017, 21, 915-923.	3.9	3
44	Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. Nanoscale, 2016, 8, 9318-9327.	5.6	13
45	Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 25798-25807.	8.0	167
46	Synthesis, Crystal Structure, and Biological Activity of Novel Anthranilic Diamide Insecticide Containing Propargyl Ether Group. Journal of Heterocyclic Chemistry, 2016, 53, 1036-1045.	2.6	12
47	Oncoprotein HBXIP Modulates Abnormal Lipid Metabolism and Growth of Breast Cancer Cells by Activating the LXRs/SREBP-1c/FAS Signaling Cascade. Cancer Research, 2016, 76, 4696-4707.	0.9	71
48	An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells. Biomacromolecules, 2015, 16, 2444-2454.	5.4	34
49	Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules, 2015, 16, 3345-3356.	5.4	65
50	A biodegradable and fluorescent nanovehicle with enhanced selective uptake by tumor cells. Polymer Chemistry, 2015, 6, 6529-6542.	3.9	10
51	Antibacterial amphiphiles based on Îμ-polylysine: synthesis, mechanism of action, and cytotoxicity. RSC Advances, 2015, 5, 69325-69333.	3.6	19
52	Mn(<scp>ii</scp>) tags for DEER distance measurements in proteins via C–S attachment. Dalton Transactions, 2015, 44, 20812-20816.	3.3	42
53	BODIPY-based macromolecular photosensitizer with cation-enhanced antibacterial activity. Polymer Chemistry, 2015, 6, 302-310.	3.9	47
54	In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery. Carbohydrate Polymers, 2014, 105, 63-69.	10.2	58

Үи Zhao

#	Article	IF	CITATIONS
55	The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Letters, 2014, 355, 288-296.	7.2	49
56	Multivalent polymer–Au nanocomposites with cationic surfaces displaying enhanced antimicrobial activity. Polymer Chemistry, 2014, 5, 3038-3044.	3.9	28
57	Synthesis, crystal structure and biological activity of a novel anthranilic diamide insecticide containing allyl ether. Research on Chemical Intermediates, 2013, 39, 3071-3088.	2.7	3
58	Design, syntheses and biological activities of novel anthranilic diamide insecticides containing N-pyridylpyrazole. Chemical Research in Chinese Universities, 2013, 29, 51-56.	2.6	5
59	Water-soluble BODIPY-conjugated glycopolymers as fluorescent probes for live cell imaging. Polymer Chemistry, 2013, 4, 5743.	3.9	44
60	Synthesis and biological activity of novel anthranilic diamides containing N-substituted arylmethylene moieties. Chemical Research in Chinese Universities, 2013, 29, 1134-1139.	2.6	6
61	Synthesis, crystal structure and biological activity of novel anthranilic diamide insecticide containing alkyl ether group. Molecular Diversity, 2012, 16, 711-725.	3.9	9
62	Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-κB in hepatoma cells. Biochemical and Biophysical Research Communications, 2012, 418, 647-651.	2.1	25
63	Design, Synthesis and Biological Activities of Novel Anthranilic Diamide Insecticide Containing Trifluoroethyl Ether. Chinese Journal of Chemistry, 2012, 30, 1748-1758.	4.9	27
64	Design, Synthesis and Insecticidal Activities of Novel <i>N</i> â€Oxalyl Derivatives of Neonicotinoid Compound. Chinese Journal of Chemistry, 2010, 28, 475-479.	4.9	13
65	Synthesis, Crystal Structure, and Insecticidal Activity of Novel <i>N</i> -Alkyloxyoxalyl Derivatives of 2-Arylpyrrole. Journal of Agricultural and Food Chemistry, 2008, 56, 7326-7332.	5.2	27
66	Synthesis, Insecticidal, and Acaricidal Activities of Novel 2-Aryl-pyrrole Derivatives Containing Ester Groups. Journal of Agricultural and Food Chemistry, 2008, 56, 10176-10182.	5.2	40
67	Tailoring a Nanochaperone to Regulate $\hat{I}\pm \hat{a} {\in} S$ ynuclein Assembly. Angewandte Chemie, O, , .	2.0	1
68	Nanocomposites Facilitate the Removal of $\hat{Al^2}$ Fibrils for Neuroprotection. Chemical Research in Chinese Universities, 0, , 1.	2.6	1
69	"Spear and Shield in One―Nanochaperone Enables Protein to Navigate Multiple Biological Barriers for Enhanced Tumor Synergistic Therapy. Biomaterials Science, 0, , .	5.4	1