Andreia Fonseca de Faria

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1183972/andreia-fonseca-de-faria-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 3,483 21 39 g-index

39 and 3,968 7.6 sext. citations avg, IF 5.75 L-index

#	Paper	IF	Citations
34	Machine Learning and Natural Language Processing Enable a Data-Oriented Experimental Design Approach for Producing Biochar and Hydrochar from Biomass. <i>Chemistry of Materials</i> , 2022 , 34, 979-990	9.6	4
33	Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation <i>Water Research</i> , 2022 , 217, 118375	12.5	1
32	Sustainable Cellulose Nanocrystals for Improved Antimicrobial Properties of Thin Film Composite Membranes. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 6534-6540	8.3	4
31	Physical Membrane-Stress-Mediated Antimicrobial Properties of Cellulose Nanocrystals. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3203-3212	8.3	9
30	Microbe Decontamination of Water 2019 , 151-185		
29	Elucidating the Role of Oxidative Debris in the Antimicrobial Properties of Graphene Oxide. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1164-1174	5.6	25
28	Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation. <i>Cellulose</i> , 2017 , 24, 781-796	5.5	21
27	Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. <i>Environmental Science & Environmental </i>	·191 ³	137
26	Thin-film composite forward osmosis membranes functionalized with graphene oxidelilver nanocomposites for biofouling control. <i>Journal of Membrane Science</i> , 2017 , 525, 146-156	9.6	137
25	Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 3155-67	5.7	25
24	Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. <i>Water Research</i> , 2015 , 81, 333-42	12.5	95
23	Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 2015, 9, 7226-36	16.7	620
22	Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites. <i>ACS Applied Materials & District Research</i> , 7, 12751-9	9.5	213
21	Environmental applications of graphene-based nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 5861	-98 .5	1022
20	Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 112-117	11	135
19	Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. <i>Cellulose</i> , 2015 , 22, 3895-3906	5.5	25
18	Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6847-61	7.3	87

LIST OF PUBLICATIONS

17	Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. <i>Carbohydrate Polymers</i> , 2015 , 123, 217-27	10.3	98
16	Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	65
15	Nanomaterials. Nanomedicine and Nanotoxicology, 2014 , 1-29	0.3	1
14	Noncovalent Interaction with Graphene Oxide: The Crucial Role of Oxidative Debris. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2187-2193	3.8	46
13	Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: A potential dispersing agent for carbon nanotube ecotoxicological studies. <i>Process Biochemistry</i> , 2014 , 49, 1162-116	5 8 .8	14
12	Structural and Morphological Investigations of Ecyclodextrin-Coated Silver Nanoparticles. <i>Microscopy and Microanalysis</i> , 2014 , 20, 2114-2115	0.5	1
11	Production and characterization of surface-active compounds from Gordonia amicalis. <i>Brazilian Archives of Biology and Technology</i> , 2014 , 57, 138-144	1.8	9
10	Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. <i>Nanomedicine and Nanotoxicology</i> , 2014 , 363-405	0.3	5
9	Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 113, 115-24	6	281
8	Structural and morphological investigations of Eyclodextrin-coated silver nanoparticles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 118, 289-97	6	41
7	Unveiling the Role of Oxidation Debris on the Surface Chemistry of Graphene through the Anchoring of Ag Nanoparticles. <i>Chemistry of Materials</i> , 2012 , 24, 4080-4087	9.6	8o
6	Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. <i>Process Biochemistry</i> , 2011 , 46, 1951	- 1 :857	123
5	Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2011 , 38, 863-71	4.2	26
4	Oil Recovery From Fuel Oil Storage Tank Sludge Using Biosurfactants. <i>Journal of Bioremediation & Biodegradation</i> , 2011 , 02,	0.5	8
3	Production of xylooligosaccharides from enzymatic hydrolysis of xylan by white-rot fungi Pleurotus. <i>Acta Scientiarum - Technology</i> , 2010 , 32,	0.5	2
2	Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. <i>Bioresource Technology</i> , 2009 , 100, 4669-75	11	114
1	Enhancing the anti-fouling and fouling removal properties of thin-film composite membranes through an intercalated functionalization method. <i>Environmental Science: Water Research and Technology</i> ,	4.2	1