
## Andreia Fonseca de Faria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1183972/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Machine Learning and Natural Language Processing Enable a Data-Oriented Experimental Design<br>Approach for Producing Biochar and Hydrochar from Biomass. Chemistry of Materials, 2022, 34,<br>979-990. | 3.2 | 28        |
| 2  | "Attacking–Attacking―Anti-biofouling Strategy Enabled by Cellulose Nanocrystals–Silver Materials.<br>ACS Applied Bio Materials, 2022, 5, 1025-1037.                                                     | 2.3 | 14        |
| 3  | Silica Nanoparticles and Surface Silanization for the Fabrication of Water-Repellent Cotton Fibers.<br>ACS Applied Nano Materials, 2022, 5, 4634-4647.                                                  | 2.4 | 7         |
| 4  | Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation. Water Research, 2022, 217, 118375.                     | 5.3 | 25        |
| 5  | Facile preparation of anti-biofouling reverse osmosis membrane embedded with polydopamine-nano copper functionality: Performance and mechanism. Journal of Membrane Science, 2022, 658, 120721.         | 4.1 | 10        |
| 6  | Physical Membrane-Stress-Mediated Antimicrobial Properties of Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2021, 9, 3203-3212.                                                    | 3.2 | 29        |
| 7  | Sustainable Cellulose Nanocrystals for Improved Antimicrobial Properties of Thin Film Composite Membranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 6534-6540.                               | 3.2 | 23        |
| 8  | Microbe Decontamination of Water. , 2019, , 151-185.                                                                                                                                                    |     | 0         |
| 9  | Elucidating the Role of Oxidative Debris in the Antimicrobial Properties of Graphene Oxide. ACS<br>Applied Nano Materials, 2018, 1, 1164-1174.                                                          | 2.4 | 42        |
| 10 | Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation. Cellulose, 2017, 24, 781-796.                                        | 2.4 | 32        |
| 11 | Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with<br>Zwitterionic Polymers and Silver Nanoparticles. Environmental Science & Technology, 2017, 51,<br>182-191.     | 4.6 | 180       |
| 12 | Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. Journal of Membrane Science, 2017, 525, 146-156.                         | 4.1 | 180       |
| 13 | Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant<br>Staphylococcus aureus. International Journal of Nanomedicine, 2015, 10, 6847.                        | 3.3 | 111       |
| 14 | Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. Carbohydrate Polymers, 2015, 123, 217-227.                                          | 5.1 | 123       |
| 15 | Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Applied Microbiology and Biotechnology, 2015, 99, 3155-3167.                     | 1.7 | 30        |
| 16 | Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Research, 2015, 81, 333-342.                                                          | 5.3 | 119       |
| 17 | Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 2015, 9, 7226-7236.                                                                                                  | 7.3 | 806       |
| 18 | Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide–Silver<br>Nanocomposites. ACS Applied Materials & Interfaces, 2015, 7, 12751-12759.                              | 4.0 | 256       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.                                                                                                           | 18.7 | 1,236     |
| 20 | Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy.<br>Environmental Science and Technology Letters, 2015, 2, 112-117.                                                    | 3.9  | 164       |
| 21 | Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles.<br>Cellulose, 2015, 22, 3895-3906.                                                                                  | 2.4  | 35        |
| 22 | Production and characterization of surface-active compounds from Gordonia amicalis. Brazilian<br>Archives of Biology and Technology, 2014, 57, 138-144.                                                              | 0.5  | 11        |
| 23 | Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives.<br>Nanomedicine and Nanotoxicology, 2014, , 363-405.                                                                         | 0.1  | 7         |
| 24 | Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.<br>Colloids and Surfaces B: Biointerfaces, 2014, 113, 115-124.                                                  | 2.5  | 342       |
| 25 | Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 118, 289-297.                                                               | 2.5  | 52        |
| 26 | Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. Journal of Nanoparticle Research, 2014, 16, 1.                                                 | 0.8  | 75        |
| 27 | Nanomaterials. Nanomedicine and Nanotoxicology, 2014, , 1-29.                                                                                                                                                        | 0.1  | 2         |
| 28 | Noncovalent Interaction with Graphene Oxide: The Crucial Role of Oxidative Debris. Journal of<br>Physical Chemistry C, 2014, 118, 2187-2193.                                                                         | 1.5  | 52        |
| 29 | Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: A potential<br>dispersing agent for carbon nanotube ecotoxicological studies. Process Biochemistry, 2014, 49,<br>1162-1168.         | 1.8  | 17        |
| 30 | Structural and Morphological Investigations of β-Cyclodextrin-Coated Silver Nanoparticles.<br>Microscopy and Microanalysis, 2014, 20, 2114-2115.                                                                     | 0.2  | 1         |
| 31 | Unveiling the Role of Oxidation Debris on the Surface Chemistry of Graphene through the Anchoring of Ag Nanoparticles. Chemistry of Materials, 2012, 24, 4080-4087.                                                  | 3.2  | 84        |
| 32 | Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis<br>isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 2011, 46,<br>1951-1957. | 1.8  | 152       |
| 33 | Purification and structural characterization of fengycin homologues produced by Bacillus subtilis<br>LSFM-05 grown on raw glycerol. Journal of Industrial Microbiology and Biotechnology, 2011, 38,<br>863-871.      | 1.4  | 39        |
| 34 | Oil Recovery From Fuel Oil Storage Tank Sludge Using Biosurfactants. Journal of Bioremediation & Biodegradation, 2011, 02, .                                                                                         | 0.5  | 18        |
| 35 | Production of xylooligosaccharides from enzymatic hydrolysis of xylan by white-rot fungi<br>Pleurotus. Acta Scientiarum - Technology, 2010, 32, .                                                                    | 0.4  | 4         |
| 36 | Application of molecular fingerprinting for analysis of a PAH-contaminated soil microbiota growing<br>in the presence of complex PAHs. Acta Scientiarum - Biological Sciences, 2010, 32, .                           | 0.3  | 1         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology, 2009, 100, 4669-4675.            | 4.8 | 131       |
| 38 | Enhancing the anti-fouling and fouling removal properties of thin-film composite membranes through<br>an intercalated functionalization method. Environmental Science: Water Research and Technology, 0, | 1.2 | 10        |

**, ·**