Jorge Linares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11837692/publications.pdf Version: 2024-02-01

LODGE LINADES

#	Article	IF	CITATIONS
1	Pressure and Temperature Spin Crossover Sensors with Optical Detection. Sensors, 2012, 12, 4479-4492.	3.8	292
2	Prediction of the Spin Transition Temperature in Fe ^{II} One-Dimensional Coordination Polymers: an Anion Based Database. Inorganic Chemistry, 2009, 48, 7838-7852.	4.0	116
3	Spin Crossover in the 2,2â€~-Bipyrimidine- (bpym-) Bridged Iron(II) Complexes [Fe(L)(NCX)2]2(bpym) (L = 2,) Tj ET Calorimetric, and Mössbauer Spectroscopy Studies. Inorganic Chemistry, 1997, 36, 455-464.	Qq1 1 (4.0	0.784314 rg8 114
4	Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study. Physical Review B, 2011, 84, .	3.2	106
5	A new 3-D polymeric spin transition compound: [tris(1,4-bis(tetrazol-1-yl)butane-N1,N 1′)iron(II)] bis(perchlorate). Dalton Transactions RSC, 2001, , 466-471.	2.3	73
6	First-order reversal curve analysis of spin-transition thermal hysteresis in terms of physical-parameter distributions and their correlations. Physical Review B, 2005, 71, .	3.2	72
7	Pressure and Temperature Sensors Using Two Spin Crossover Materials. Sensors, 2016, 16, 187.	3.8	68
8	Quantitative Contact Pressure Sensor Based on Spin Crossover Mechanism for Civil Security Applications. Journal of Physical Chemistry C, 2018, 122, 7597-7604.	3.1	58
9	First-order reversal curves analysis of rate-dependent hysteresis: The example of light-induced thermal hysteresis in a spin-crossover solid. Physical Review B, 2005, 72, .	3.2	52
10	Fe-tourmaline synthesis under different T and f _{O2} conditions. American Mineralogist, 1998, 83, 525-534.	1.9	50
11	Effect of hydrostatic pressure on phase transitions in spin-crossover 1D systems. Chemical Physics, 2000, 255, 317-323.	1.9	50
12	Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer. Sensors, 2015, 15, 2388-2398.	3.8	50
13	Spin crossover in a heptanuclear mixed-valence iron complex. Dalton Transactions, 2010, 39, 2198.	3.3	49
14	Decamethylbimetallocenes. Organometallics, 1992, 11, 1454-1456.	2.3	42
15	Temperature-Dependent Interactions and Disorder in the Spin-Transition Compound [Fe ^{II} (L) ₂][ClO ₄] ₂ ·C ₇ H ₈ Through Structural, Calorimetric, Magnetic, Photomagnetic, and Diffuse Reflectance Investigations. Inorganic Chemistry, 2008, 47, 7577-7587	4.0	41
16	Monte Carlo entropic sampling for the study of metastable states and relaxation paths. Physical Review E, 1997, 56, 5128-5137.	2.1	40
17	Physical properties of the spin-crossover compound hexakis(1-methyltetrazole-N4)iron(II) triflate, steady state and relaxation studies, X-ray structure of the isomorphic Ni(II) compound. Polyhedron, 2001, 20, 1699-1707.	2.2	40
18	Comparison of static and light-induced thermal hystereses of a spin-crossover solid, in a mean-field approachâ€. Journal of Physics Condensed Matter, 2001, 13, 2481-2495.	1.8	39

#	Article	IF	CITATIONS
19	The Ising-like model applied to switchable inorganic solids: discussion of the static properties. Comptes Rendus Chimie, 2003, 6, 385-393.	0.5	38
20	Direct access to the photo-excitation and relaxation terms in photo-switchable solids: non-linear aspects. Journal of Physics and Chemistry of Solids, 2001, 62, 1409-1422.	4.0	37
21	Nonexponential Relaxation of the Metastable State of the Spin-Crossover System [Fe(L)2](ClO4)2·H2O [L = 2,6-Bis(pyrazol-1-ylmethyl)pyridine]. Inorganic Chemistry, 2004, 43, 4880-4888.	4.0	36
22	Calorimetric measurements of diluted spin crossover complexes [FexM1â^'x(btr)2(NCS)2]·H2O with MII=Zn and Ni. Polyhedron, 2009, 28, 2531-2536.	2.2	35
23	A helium-gas-pressure apparatus with optical-reflectivity detection tested with a spin-transition solid. Measurement Science and Technology, 1999, 10, 1059-1064.	2.6	34
24	FORC method applied to the thermal hysteresis of spin transition solids: first approach of static and kinetic properties. Physica B: Condensed Matter, 2004, 343, 15-19.	2.7	33
25	Iron(II) spin transition 1,2,4-triazole chain compounds with novel inorganic fluorinated counteranions. Polyhedron, 2007, 26, 2259-2263.	2.2	32
26	Unconventional Spin Crossover in Dinuclear and Trinuclear Iron(III) Complexes with Cyanido and Metallacyanido Bridges. European Journal of Inorganic Chemistry, 2009, 2009, 3141-3154.	2.0	30
27	Surface Effects Leading to Unusual Size Dependence of the Thermal Hysteresis Behavior in Spin-Crossover Nanoparticles, Magnetochemistry, 2016, 2, 24. Pressure effect investigated with first order reversal curve method on the spin-transition	2.4	30
28	compounds [Fe <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub></mml:mrow></mml:math> Zn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	3.2	29
29	display="inline"> <mml:mrow><mml:msub><mml:mrow /> /mml-mrow><mml:mn> //mml:mrow Role of Edge Atoms in the Hysteretic Behaviour of 3D Spin Crossover Nanoparticles Revealed by an Isingâ€Like Model. European Journal of Inorganic Chemistry, 2013, 2013, 5086-5093.</mml:mn></mml:mrow </mml:msub></mml:mrow>	2.0	28
30	Surprising features in old and new [Fe(alkyl-tetrazole)6] spin-crossover systems. Polyhedron, 2001, 20, 1709-1716.	2.2	27
31	Monte Carlo entropic sampling applied to spin crossover solids: the squareness of the thermal hysteresis loop. Polyhedron, 2003, 22, 2453-2456.	2.2	27
32	Lattice architecture effect on the cooperativity of spin transition coordination polymers. Journal of Applied Physics, 2014, 115, 053523.	2.5	26
33	Intramolecular aspects of the electron transfer in the biferrocenium mixed-valence cation, using PKS theory. Chemical Physics, 1993, 170, 47-55.	1.9	25
34	Thermo- and piezochromic properties of [Fe(hyptrz)]A2·H2O spin crossover 1D coordination polymer: Towards spin crossover based temperature and pressure sensors. Physica B: Condensed Matter, 2014, 449, 47-51.	2.7	23
35	Size and pressure effects in the atom-phonon coupling model for spin crossover compounds. Journal of Applied Physics, 2008, 103, 07B908.	2.5	21
36	Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover nanoparticles. Physica B: Condensed Matter, 2016, 486, 164-168.	2.7	21

#	Article	IF	CITATIONS
37	Rate-dependent light-induced thermal hysteresis of [Fe(PM-BiA)2(NCS)2] spin transition complex. Journal of Applied Physics, 2006, 99, 08J504.	2.5	20
38	Monte Carlo simulations for 1- and 2D spin crossover compounds using the atom–phonon coupling model. Polyhedron, 2009, 28, 1684-1687.	2.2	20
39	Ab initio static and molecular dynamics study of the absorption spectra of the 4-styrylpyridine photoswitch in its cis and trans forms. Physical Chemistry Chemical Physics, 2010, 12, 6107.	2.8	20
40	Diffusionless phase transition with two order parameters in spin-crossover solids. Journal of Applied Physics, 2014, 116, 173509.	2.5	20
41	Syntheses and structures of decamethylbiferrocene mono- and di-cation triiodides. Journal of Organometallic Chemistry, 1993, 451, C10-C12.	1.8	19
42	Quasi-static nature of the light induced thermal hysteresis in [Fe(ptz)6](BF4)2 spin-transition solid. Polyhedron, 2001, 20, 1599-1606.	2.2	19
43	Hydrostatic pressure investigation of the spin crossover compound [Fe(PMâ^'BiA)2(NCS)2] polymorph I using reflectance detection. Journal of Applied Physics, 2009, 106, .	2.5	18
44	Analysis of the Hysteretic Behaviour of 3D Spin Crossover Compounds by Using an Isingâ€Like Model. European Journal of Inorganic Chemistry, 2013, 2013, 3601-3608.	2.0	18
45	Analysis of multi-step transitions in spin crossover nanochains. Physica B: Condensed Matter, 2014, 434, 134-138.	2.7	18
46	On the origin of multi-step spin transition behaviour in 1D nanoparticles. European Physical Journal B, 2015, 88, 1.	1.5	18
47	Re-entrance phase and excited metastable electronic spin states in one-dimensional spin crossover compounds explained by atom-phonon coupling model. Journal of Applied Physics, 2009, 106, .	2.5	17
48	Photoexcitation and Relaxation Properties of a Spin-Crossover Solid in the Case of a Stable High-Spin State. Journal of Physical Chemistry B, 2006, 110, 5883-5888.	2.6	16
49	Piezo- and thermo-switch investigation of the spin-crossover compound [Fe(PM-BiA)2(NCS)2]. Chemical Physics Letters, 2007, 443, 435-438.	2.6	15
50	Spin-transition in [FeII(L5)2][ClO4]2 [L5 = 2-[3-(2′-pyridyl)pyrazol-1-ylmethyl](1-methylimidazole)]: a further example of coexistence of features typical for disorder and cooperativity. Dalton Transactions, 2009, , 7462.	3.3	15
51	Size Effect and Role of Short―and Longâ€Range Interactions on 1D Spinâ€Crossover Systems within the Framework of an Isingâ€Like Model. European Journal of Inorganic Chemistry, 2013, 2013, 951-957.	2.0	15
52	Thermodynamic properties of coupled mixed-valence molecules using a cooperative PKS theory: A second-order localized—delocalized transition. Chemical Physics, 1993, 172, 239-245.	1.9	13
53	Simultaneous Reflectivity and Magnetic Measurements on Photomagnetic Solids: Spin-Crossover Solids and a Prussian Blue Analogue. Molecular Crystals and Liquid Crystals, 1999, 335, 583-592.	0.3	13
54	Influence of pressure and interactions strength on hysteretic behavior in two-dimensional polymeric spin crossover compounds. Physica B: Condensed Matter, 2014, 435, 76-79.	2.7	13

#	Article	IF	CITATIONS
55	Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking. Symmetry, 2021, 13, 828.	2.2	13
56	Ab Initio Static and Molecular Dynamics Study of 4-Styrylpyridine. ChemPhysChem, 2007, 8, 1402-1416.	2.1	12
57	A two-sublattice model for light-induced hysteresis in spin-crossover solids: symmetry breaking and kinetic effects. Journal of Physics Condensed Matter, 2000, 12, 9395-9406.	1.8	11
58	Role of open boundary conditions on the hysteretic behaviour of one-dimensional spin crossover nanoparticles. Journal of Applied Physics, 2014, 115, .	2.5	11
59	Microscopic models of spin crossover. Comptes Rendus Chimie, 2018, 21, 1170-1178.	0.5	11
60	Mössbauer study and molecular orbital calculations on some bimetallic derivatives of ferrocene and ferricinium. Hyperfine Interactions, 1993, 77, 51-66.	0.5	10
61	Study of impurities effect in spin crossover compounds using first order reversal curves (FORC) method. Polyhedron, 2007, 26, 1820-1824.	2.2	9
62	A first order reversal curve investigation of pressure hysteresis in multiferroics spin transition compound. Journal of Applied Physics, 2008, 103, 07B905.	2.5	9
63	Multi-Step in 3D Spin Crossover Nanoparticles Simulated by an Ising Model Using Entropic Sampling Monte Carlo Technique. Magnetochemistry, 2016, 2, 13.	2.4	9
64	Quasi-realistic distribution of interaction fields leading to a variant of Ising spin glass model. Physica B: Condensed Matter, 2004, 343, 314-319.	2.7	8
65	Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles. Journal of Physics: Conference Series, 2016, 738, 012068.	0.4	8
66	Influence of the Piepho-mode on charge ordering in mixed-valence biferrocenium salts. Chemical Physics, 1998, 226, 171-185.	1.9	7
67	Spin-transition in nearly cubic site in [FeII(L)3][PF6]2. Hyperfine Interactions, 2009, 188, 71-78.	0.5	5
68	Spin conversion detected by Mössbauer spectroscopy and μSR on a 1D Fell paramagnetic chain. Hyperfine Interactions, 2014, 226, 217-221.	0.5	5
69	Study of the atom-phonon coupling model for (SC) partition function: first order phase transition for an infinite linear chain. European Physical Journal B, 2014, 87, 1.	1.5	5
70	New statistical method for characterization of structured recording media magnetization processes. Journal of Applied Physics, 2004, 95, 6750-6752.	2.5	4
71	Three Stable States Simulated for 1D Spinâ€Crossover Nanoparticles Using the Ising‣ike Model. European Journal of Inorganic Chemistry, 2017, 2017, 4196-4201	2.0	4
72	Monitoring Spin-Crossover Properties by Diffused Reflectivity. Symmetry, 2021, 13, 1148.	2.2	4

#	Article	IF	CITATIONS
73	Kinetic hysteresis in spin crossover solids analyzed using FORC diagrams. Physica B: Condensed Matter, 2006, 372, 211-214.	2.7	3
74	Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles. Physica B: Condensed Matter, 2016, 486, 160-163.	2.7	3
75	Molecules with Two Electronic Energy Levels: Study of Nanoparticles in the Atom-Phonon Coupling Model Including a Surface Effect. European Journal of Inorganic Chemistry, 2018, 2018, 493-502.	2.0	3
76	Shape, size, pressure and matrix effects on 2D spin crossover nanomaterials studied using density of states obtained by dynamic programming. Computational Materials Science, 2021, 187, 110061.	3.0	3
77	A First Order Phase Transition Studied by an Ising-Like Model Solved by Entropic Sampling Monte Carlo Method. Symmetry, 2021, 13, 587.	2.2	3
78	2D Spin Crossover Nanoparticles described by the Ising-like model solved in Local Mean-Field Approximation. Journal of Physics: Conference Series, 2017, 936, 012052.	0.4	2
79	Three states and three steps simulated within Ising like model solved by local mean field approximation in 3D spin crossover nanoparticles. Materials Today Communications, 2021, 26, 102074.	1.9	2
80	Determination of the physical parameters distribution in spin transition compounds using experimental FORC diagram. Physica B: Condensed Matter, 2006, 372, 215-218.	2.7	1
81	Analysis of Architecture Effect on Hysteretic Behavior of 3-D Spin Crossover Nanostructures. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
82	Numerical simulation of a device with two spin crossover complexes: application for temperature and pressure sensors. Journal of Physics: Conference Series, 2017, 936, 012048.	0.4	1
83	A Generalized Ising-like Model for Spin Crossover Nanoparticles. Magnetochemistry, 2022, 8, 49.	2.4	1
84	Hexagonal-Shaped Spin Crossover Nanoparticles Studied by Ising-Like Model Solved by Local Mean Field Approximation. Magnetochemistry, 2021, 7, 69.	2.4	0