
Akihito Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11836976/publications.pdf Version: 2024-02-01

Δειμιτό Ηλάλολ

#	Article	IF	CITATIONS
1	Uterus-specific transcriptional regulation underlies eggshell pigment production in Japanese quail. PLoS ONE, 2022, 17, e0265008.	2.5	0
2	Photo-isolation chemistry for high-resolution and deep spatial transcriptome with mouse tissue sections. STAR Protocols, 2022, 3, 101346.	1.2	3
3	Genome-wide analysis of chromatin structure changes upon MyoD binding in proliferative myoblasts during the cell cycle. Journal of Biochemistry, 2021, 169, 653-661.	1.7	0
4	Chromatin structure-dependent histone incorporation revealed by a genome-wide deposition assay. ELife, 2021, 10, .	6.0	6
5	Transcriptome analysis of gene expression changes upon enzymatic dissociation in skeletal myoblasts. Genes To Cells, 2021, 26, 530-540.	1.2	6
6	High-depth spatial transcriptome analysis by photo-isolation chemistry. Nature Communications, 2021, 12, 4416.	12.8	22
7	Targeted inhibition of EPAS1-driven IL-31 production by a small-molecule compound. Journal of Allergy and Clinical Immunology, 2021, 148, 633-638.	2.9	4
8	Recent advances in single-cell epigenomics. Current Opinion in Structural Biology, 2021, 71, 116-122.	5.7	14
9	Modeling population size independent tissue epigenomes by ChILâ€seq with single thin sections. Molecular Systems Biology, 2021, 17, e10323.	7.2	1
10	Subnuclear gene positioning through lamina association affects copper tolerance. Nature Communications, 2020, 11, 5914.	12.8	37
11	Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input. Nature Protocols, 2020, 15, 3334-3360.	12.0	12
12	Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 2020, 6, eaaz6699.	10.3	66
13	Biochemical analysis of nucleosome targeting by Tn5 transposase. Open Biology, 2019, 9, 190116.	3.6	14
14	Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development (Cambridge), 2019, 146, .	2.5	34
15	Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection. Neurorehabilitation and Neural Repair, 2019, 33, 225-231.	2.9	7
16	A chromatin integration labelling method enables epigenomic profiling with lower input. Nature Cell Biology, 2019, 21, 287-296.	10.3	121
17	Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells. ELife, 2019, 8, .	6.0	34
18	Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. ELife, 2019, 8, .	6.0	40

Akihito Harada

#	Article	IF	CITATIONS
19	Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nature Communications, 2018, 9, 1400.	12.8	23
20	Sensitive detection of fluorescence in western blotting by merging images. PLoS ONE, 2018, 13, e0191532.	2.5	13
21	Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis. Cell Reports, 2017, 18, 593-600.	6.4	82
22	Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. American Journal of Pathology, 2017, 187, 639-653.	3.8	61
23	Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 8758-8772.	14.5	31
24	Crystal Structure and Characterization of Novel Human Histone H3 Variants, H3.6, H3.7, and H3.8. Biochemistry, 2017, 56, 2184-2196.	2.5	20
25	Temporal regulation of chromatin during myoblast differentiation. Seminars in Cell and Developmental Biology, 2017, 72, 77-86.	5.0	17
26	The requirement of Mettl3-promoted <i>MyoD</i> mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biology, 2017, 7, 170119.	3.6	71
27	Identification of Immunoglobulin Gene Sequences from a Small Read Number of mRNA-Seq Using Hybridomas. PLoS ONE, 2016, 11, e0165473.	2.5	11
28	Chd5 Regulates MuERV-L/MERVL Expression in Mouse Embryonic Stem Cells Via H3K27me3 Modification and Histone H3.1/H3.2. Journal of Cellular Biochemistry, 2016, 117, 780-792.	2.6	29
29	Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Scientific Reports, 2016, 6, 24318.	3.3	40
30	Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics and Chromatin, 2016, 9, 2.	3.9	53
31	Tissue-specific expression of histone H3 variants diversified after species separation. Epigenetics and Chromatin, 2015, 8, 35.	3.9	51
32	Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Research, 2015, 43, 775-786.	14.5	34
33	Spatial re-organization of myogenic regulatory sequences temporally controls gene expression. Nucleic Acids Research, 2015, 43, 2008-2021.	14.5	31
34	Relationship between the risk for a shrimp allergy and freshness or cooking. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1698-1701.	1.3	6
35	Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Chromosome Research, 2015, 23, 753-766.	2.2	49
36	Hsc70 Contributes to Cancer Cell Survival by Preventing Rab1A Degradation under Stress Conditions. PLoS ONE, 2014, 9, e96785.	2.5	34

Akihito Harada

#	Article	IF	CITATIONS
37	Establishment of Neutralizing Rat Monoclonal Antibodies for Fibroblast Growth Factor-2. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 261-269.	1.6	4
38	Generation of a Monoclonal Antibody for INI1/hSNF5/BAF47. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 49-51.	1.6	0
39	Production of a Monoclonal Antibody for C/EBPβ: The Subnuclear Localization of C/EBPβ in Mouse L929 Cells. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 34-37.	1.6	0
40	Contribution of Structural Reversibility to the Heat Stability of the Tropomyosin Shrimp Allergen. Bioscience, Biotechnology and Biochemistry, 2013, 77, 948-953.	1.3	29
41	A co-localization model of paired ChIP-seq data using a large ENCODE data set enables comparison of multiple samples. Nucleic Acids Research, 2013, 41, 54-62.	14.5	8
42	Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO Journal, 2012, 31, 2994-3007.	7.8	117
43	The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach. BMC Genomics, 2011, 12, 516.	2.8	36
44	Generation of a Rat Monoclonal Antibody Specific for Chd2. Hybridoma, 2010, 29, 173-177.	0.4	4
45	Rat Monoclonal Antibody Specific for the Chromatin Remodeling Factor, CHD1. Hybridoma, 2010, 29, 237-240.	0.4	1
46	Production of a Rat Monoclonal Antibody Specific for Myf5. Hybridoma, 2010, 29, 59-62.	0.4	7
47	Generation of a Rat Monoclonal Antibody Specific for Heat Shock Cognate Protein 70. Hybridoma, 2010, 29, 453-456.	0.4	6
48	The LTB4-BLT1 Axis Mediates Neutrophil Infiltration and Secondary Injury in Experimental Spinal Cord Injury. American Journal of Pathology, 2010, 176, 2352-2366.	3.8	148
49	Rat Monoclonal Antibody Specific for MyoD. Hybridoma, 2010, 29, 255-258.	0.4	5
50	Generation of a Rat Monoclonal Antibody Specific for Pax7. Hybridoma, 2009, 28, 451-453.	0.4	8
51	Generation of a Rat Monoclonal Antibody Specific for Brm. Hybridoma, 2009, 28, 455-458.	0.4	7
52	Production of a Rat Monoclonal Antibody Against Brg1. Hybridoma, 2009, 28, 463-466.	0.4	15
53	Amyloid Fibril Formation of Hen Lysozyme Depends on the Instability of the C-Helix (88-99). Bioscience, Biotechnology and Biochemistry, 2008, 72, 1523-1530.	1.3	17
54	Relationship between the Stability of Hen Egg-White Lysozymes Mutated at Sites Designed to Interact with α-Helix Dipoles and Their Secretion Amounts in Yeast. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2952-2961.	1.3	10

#	Article	IF	CITATIONS
55	Detailed protocol $\hat{a}^{*} \in$ Chromatin Integration labeling. Protocol Exchange, 0, , .	0.3	1