
Mike Marsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11836881/publications.pdf Version: 2024-02-01

MIKE MADSH

#	Article	IF	CITATIONS
1	Application of Deep Learning Convolutional Neural Networks for Internal Tablet Defect Detection: High Accuracy, Throughput, and Adaptability. Journal of Pharmaceutical Sciences, 2020, 109, 1547-1557.	3.3	48
2	Dragonfly as a Platform for Easy Image-based Deep Learning Applications. Microscopy and Microanalysis, 2018, 24, 532-533.	0.4	40
3	Simplifying and Streamlining Large-Scale Materials Image Processing with Wizard-Driven and Scalable Deep Learning. Microscopy and Microanalysis, 2019, 25, 402-403.	0.4	8
4	Forget About Cleaning up Your Micrographs: Deep Learning Segmentation is Robust to Image Artifacts. Microscopy and Microanalysis, 2020, 26, 1468-1469.	0.4	7
5	Deep Learning Convolutional Neural Networks for Pharmaceutical Tablet Defect Detection. Microscopy and Microanalysis, 2020, 26, 1606-1609.	0.4	7
6	Dragonfly as a Flexible Platform for Interpreting and Processing Hyperspectral and other High-dimensional Images. Microscopy and Microanalysis, 2018, 24, 560-561.	0.4	3
7	The Dragonfly Macro Engine for Executing Recorded Tasks in Image Processing and Visualization. Microscopy and Microanalysis, 2017, 23, 246-247.	0.4	2
8	Extending Monte Carlo Simulations of Electron Microscopy Images and Hyperspectral Images in a User-Friendly Framework. Microscopy and Microanalysis, 2019, 25, 222-223.	0.4	2
9	Workflow Automation and Portability Enable High Throughput Image Processing and Segmentation for Cell Biology Systems. Microscopy and Microanalysis, 2019, 25, 1388-1389.	0.4	2
10	Microscopy and Image Processing Recordkeeping: Never Again Lose Track of Your Metadata. Microscopy and Microanalysis, 2020, 26, 1714-1715.	0.4	1
11	Centralizing digital resources for data management, processing, and analysis for enterprise scale imaging research. Microscopy and Microanalysis, 2021, 27, 1084-1085.	0.4	1
12	Survey of Image Analysis Methods Applied to Consumer Foods. Microscopy and Microanalysis, 2018, 24, 1208-1209.	0.4	0
13	Using Deep Learning to Deconvolute Complex Spectra for Hyperspectral Imaging Applications. Microscopy and Microanalysis, 2019, 25, 178-179.	0.4	0
14	Forward modeling of volume electron microscopy (vEM) of stained resin-embedded biological samples. Microscopy and Microanalysis, 2021, 27, 776-777.	0.4	0