
Xueqin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11836408/publications.pdf Version: 2024-02-01

XUEOIN LUU

#	Article	IF	CITATIONS
1	K+-Intercalated carbon nitride with electron storage property for high-efficiency visible light driven nitrogen fixation. Chemical Engineering Journal, 2022, 433, 133573.	6.6	19
2	Harvesting the infrared part of solar light to promote charge transfer in Bi2S3/WO3 photoanode for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2022, 621, 267-274.	5.0	12
3	Surface oxygen vacancies of TiO ₂ nanorods by electron beam irradiation for efficient photoelectrochemical water splitting. CrystEngComm, 2021, 23, 2952-2960.	1.3	6
4	General and Robust Photothermalâ€Heatingâ€Enabled Highâ€Efficiency Photoelectrochemical Water Splitting. Advanced Materials, 2021, 33, e2004406.	11.1	104
5	Spinel-Oxide-Integrated BiVO ₄ Photoanodes with Photothermal Effect for Efficient Solar Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 48901-48912.	4.0	21
6	Facile synthesis of sulfur-doped polymeric carbon nitride/MoS2 face-to-face heterojunction for highly efficient photocatalytic interfacial charge separation. Chemical Engineering Journal, 2020, 384, 123330.	6.6	57
7	SnO ₂ as Advanced Anode of Alkaliâ€ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Advanced Energy Materials, 2020, 10, 1902657.	10.2	71
8	Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. Journal of Materials Chemistry A, 2020, 8, 14915-14920.	5.2	58
9	Photothermal effect-enhanced photoelectrochemical water splitting of a BiVO ₄ photoanode modified with dual-functional polyaniline. Journal of Materials Chemistry A, 2020, 8, 15976-15983.	5.2	81
10	From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage. Nanoscale, 2020, 12, 8636-8646.	2.8	36
11	Promoting Oxygen Evolution Reaction of Coâ€Based Catalysts (Co ₃ O ₄ , CoS,) Tj ETQq1	1.0.7843 5.2	14 rgBT /0\
12	Enabling highly efficient photocatalytic hydrogen generation and organics degradation <i>via</i> a perovskite solar cell-assisted semiconducting nanocomposite photoanode. Journal of Materials Chemistry A, 2019, 7, 165-171.	5.2	33
13	Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. CheM, 2019, 5, 2775-2813.	5.8	78
14	Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries. Nano Energy, 2019, 59, 229-236.	8.2	67
15	A Robust Route to Co ₂ (OH) ₂ CO ₃ Ultrathin Nanosheets with Superior Lithium Storage Capability Templated by Aspartic Acidâ€Functionalized Graphene Oxide. Advanced Energy Materials, 2019, 9, 1901093.	10.2	94
16	Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 8070-8078.	3.8	42
17	Spatial engineering of a Co(OH) _x encapsulated p-Cu ₂ S/n-BiVO ₄ photoanode: simultaneously promoting charge separation and surface reaction kinetics in solar water splitting. Journal of Materials Chemistry A, 2019, 7, 6747-6752.	5.2	43
18	Synergistically enhanced charge separation in BiFeO3/Sn:TiO2 nanorod photoanode via bulk and surface dual modifications. Nano Energy, 2019, 59, 33-40.	8.2	53

XUEQIN LIU

#	Article	IF	CITATIONS
19	A green one-pot approach for mesoporous g-C3N4 nanosheets with in situ sodium doping for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 748-756.	3.8	57
20	Tailoring TiO ₂ Nanotubeâ€Interlaced Graphite Carbon Nitride Nanosheets for Improving Visibleâ€Lightâ€Driven Photocatalytic Performance. Advanced Science, 2018, 5, 1700844.	5.6	66
21	Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 5765-5771.	7.2	372
22	Ordered Single-Crystalline Anatase TiO ₂ Nanorod Clusters Planted on Graphene for Fast Charge Transfer in Photoelectrochemical Solar Cells. Small, 2017, 13, 1700793.	5.2	19
23	Interconnected Ni(HCO ₃) ₂ Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties. ACS Energy Letters, 2017, 2, 111-116.	8.8	108
24	Solar Cells: Ordered Single-Crystalline Anatase TiO ₂ Nanorod Clusters Planted on Graphene for Fast Charge Transfer in Photoelectrochemical Solar Cells (Small 28/2017). Small, 2017, 13,	5.2	1
25	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	1.3	129
26	Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy and Environmental Science, 2017, 10, 402-434.	15.6	820
27	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 4352-4356.	1.6	71
28	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 4280-4284.	7.2	257
29	Facile synthesis of core–shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent. Journal of Colloid and Interface Science, 2014, 419, 9-16.	5.0	38
30	Controllable synthesis of Ag–CuO composite nanosheets with enhanced photocatalytic property. Materials Letters, 2014, 120, 16-19.	1.3	41
31	Zinc Oxide nanorod/Au composite arrays and their enhanced photocatalytic properties. Journal of Colloid and Interface Science, 2014, 432, 170-175.	5.0	30
32	Surface-enhanced Raman scattering and photocurrent multiplication phenomenon of ZnO/Ag nanoarrays. Materials Letters, 2013, 94, 19-22.	1.3	17
33	Fabrication and photocatalytic property of CuO nanosheets via a facile solution route. Crystal Research and Technology, 2012, 47, 1140-1147.	0.6	36
34	Controllable synthesis and characterization of Ag@AgBr core–shell nanowires. Materials Research Bulletin, 2012, 47, 1285-1288.	2.7	8
35	CuO nanowires prepared via a facile solution route and their photocatalytic property. Materials Letters, 2012, 72, 49-52.	1.3	82
36	Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Materials Letters, 2012, 80, 37-39.	1.3	30

Xueqin Liu

 #	Article	IF	CITATIONS
37	Conversion from ZnO nanospindles into ZnO/ZnS core/shell composites and ZnS microspindles. Crystal Research and Technology, 2009, 44, 402-408.	0.6	17
38	Sonochemical synthesis and characterization of ZnO nanorod/Ag nanoparticle composites. Crystal Research and Technology, 2009, 44, 1249-1254.	0.6	16
39	Facile synthesis and characterization of hierarchical CuO nanoarchitectures by a simple solution route. Crystal Research and Technology, 2009, 44, 1277-1283.	0.6	22