
Hsin-Yi Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11835817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science teachers' and students' metavisualization in scientific modeling. Science Education, 2022, 106, 448-475.	1.8	4
2	Augmenting the effect of virtual labs with "teacher demonstration" and "student critique" instructional designs to scaffold the development of scientific literacy. Instructional Science, 2022, 50, 303-333.	1.1	6
3	An Experienced Science Teacher's Metavisualization in the Case of the Complex System of Carbon Cycling. Research in Science Education, 2021, 51, 493-521.	1.4	4
4	Examining secondary school students' views of model evaluation through an integrated framework of personal epistemology. Instructional Science, 2021, 49, 1-26.	1.1	1
5	University students' profiles of online learning and their relation to online metacognitive regulation and internet-specific epistemic justification. Computers and Education, 2021, 175, 104315.	5.1	46
6	The impact of light-weight inquiry with computer simulations on science learning in classrooms. Computers and Education, 2020, 146, 103770.	5.1	14
7	A systematic review of trends and findings in research employing drawing assessment in science education. Studies in Science Education, 2020, 56, 77-110.	3.4	42
8	Students' guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers and Education, 2020, 149, 103830.	5.1	34
9	Students' Context-Specific Epistemic Justifications, Prior Knowledge, Engagement, and Socioscientific Reasoning in a Mobile Augmented Reality Learning Environment. Journal of Science Education and Technology, 2020, 29, 399-408.	2.4	24
10	Investigating Students' Conceptions of Technology-Assisted Science Learning: a Drawing Analysis. Journal of Science Education and Technology, 2019, 28, 329-340.	2.4	18
11	Investigating Taiwanese Students' Visualization Competence of Matter at the Particulate Level. International Journal of Science and Mathematics Education, 2018, 16, 1207-1226.	1.5	11
12	Students' representational competence with drawing technology across two domains of science. Science Education, 2018, 102, 1129-1149.	1.8	25
13	Students' development of socio-scientific reasoning in a mobile augmented reality learning environment. International Journal of Science Education, 2018, 40, 1410-1431.	1.0	36
14	Students' Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students' Educational Levels Matter?. Research in Science Education, 2017, 47, 305-328.	1.4	20
15	How to augment the learning impact of computer simulations? The designs and effects of interactivity and scaffolding. Interactive Learning Environments, 2017, 25, 1083-1097.	4.4	17
16	The Impact of a Mobile Augmented Reality Game: Changing Students' Perceptions of the Complexity of Socioscientific Reasoning. , 2016, , .		5
17	A comparison study of augmented reality versus interactive simulation technology to support student learning of a socio-scientific issue. Interactive Learning Environments, 2016, 24, 1148-1161.	4.4	32
18	Investigating the effects of structured and guided inquiry on students' development of conceptual knowledge and inquiry abilities: a case study in Taiwan. International Journal of Science Education, 2016, 38, 1945-1971.	1.0	32

HSIN-YI CHANG

#	Article	IF	CITATIONS
19	Adapting and Customizing Web-based Inquiry Science Environments to Promote Taiwanese Students' Learning of Science. , 2016, , 443-459.		0
20	Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education, 2015, 51, 49-85.	3.4	87
21	A review of features of technology-supported learning environments based on participants' perceptions. Computers in Human Behavior, 2015, 53, 223-237.	5.1	48
22	Developing Technology-Infused Inquiry Learning Modules to Promote Science Learning in Taiwan. , 2015, , 373-403.		3
23	Adaptation of an Inquiry Visualization Curriculum and its Impact on Chemistry Learning. Asia-Pacific Education Researcher, 2014, 23, 605-619.	2.2	4
24	Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes. Journal of Science Education and Technology, 2014, 23, 355-369.	2.4	26
25	Teacher guidance to mediate student inquiry through interactive dynamic visualizations. Instructional Science, 2013, 41, 895-920.	1.1	14
26	Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 2013, 50, 858-886.	2.0	72
27	Current status, opportunities and challenges of augmented reality in education. Computers and Education, 2013, 62, 41-49.	5.1	1,478
28	Scaffolding Students' Online Critiquing of Expert- and Peer-generated Molecular Models of Chemical Reactions. International Journal of Science Education, 2013, 35, 2028-2056.	1.0	18
29	Development and implications of technology in reform-based physics laboratories. Physical Review Physics Education Research, 2012, 8, .	1.7	31
30	Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers and Education, 2011, 57, 2178-2195.	5.1	129