
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1183553/publications.pdf Version: 2024-02-01

HONCLIN

#	Article	IF	CITATIONS
1	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
2	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
3	Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7826-7833.	4.0	188
4	Perovskite solar cells: must lead be replaced – and can it be done?. Science and Technology of Advanced Materials, 2018, 19, 425-442.	2.8	151
5	High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiO _{<i>x</i>} Hole Contact. ACS Applied Materials & Interfaces, 2017, 9, 2439-2448.	4.0	139
6	Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2003.	15.6	135
7	lodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15996-16004.	5.2	134
8	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	11.1	119
9	Competition between Metallic and Vacancy Defect Conductive Filaments in a CH ₃ NH ₃ PbI ₃ -Based Memory Device. Journal of Physical Chemistry C, 2018, 122, 6431-6436.	1.5	115
10	Highâ€Quality Cuboid CH ₃ NH ₃ PbI ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	7.8	115
11	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e18010	165.2	111
12	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	2.1	105
13	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	7.3	92
14	Hole Transport Bilayer Structure for Quasiâ€2D Perovskite Based Blue Lightâ€Emitting Diodes with High Brightness and Good Spectral Stability. Advanced Functional Materials, 2019, 29, 1905339.	7.8	92
15	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
16	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
17	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
18	Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH ₃ NH ₃ PbI ₃ . Small, 2017, 13, 1700953.	5.2	73

#	Article	IF	CITATIONS
19	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31384-31393.	4.0	68
20	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	5.2	67
21	<i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682.	5.2	63
22	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	5.2	62
23	Formation of Titania Nanoarrays by Hydrothermal Reaction and Their Application in Photovoltaic Cells. Journal of the American Ceramic Society, 2008, 91, 628-631.	1.9	59
24	Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4523-4531.	4.0	56
25	Thiazole-Induced Surface Passivation and Recrystallization of CH ₃ NH ₃ PbI ₃ Films for Perovskite Solar Cells with Ultrahigh Fill Factors. ACS Applied Materials & Interfaces, 2018, 10, 42436-42443.	4.0	49
26	Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells. Journal of Materials Chemistry A, 2014, 2, 20902-20907.	5.2	47
27	Microstructurally Tailored Thin βâ€Ag ₂ Se Films toward Commercial Flexible Thermoelectrics. Advanced Materials, 2022, 34, e2104786.	11.1	47
28	Sunlight-like, color-temperature tunable white organic light-emitting diode with high color rendering index for solid-state lighting application. Journal of Materials Chemistry, 2012, 22, 22097.	6.7	44
29	Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341.	5.2	44
30	Low temperature reduction of free-standing graphene oxide papers with metal iodides for ultrahigh bulk conductivity. Scientific Reports, 2014, 4, 3965.	1.6	43
31	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	2.8	43
32	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	2.8	42
33	Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate. Journal of Agricultural and Food Chemistry, 2020, 68, 7072-7081.	2.4	41
34	BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo. Materials Science and Engineering C, 2014, 40, 1-8.	3.8	40
35	Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solutionâ€Processed Perovskites. Advanced Energy Materials, 2018, 8, 1801954.	10.2	40
36	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	7.3	40

#	Article	IF	CITATIONS
37	Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte. Frontiers of Materials Science, 2012, 6, 142-148.	1.1	39
38	Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte. Science and Technology of Advanced Materials, 2014, 15, 035006.	2.8	39
39	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 25863-25868.	1.5	38
40	Crystalline Transition from H2Ti3O7Nanotubes to Anatase Nanocrystallines Under Low-Temperature Hydrothermal Conditions. Journal of the American Ceramic Society, 2006, 89, 3564-3566.	1.9	37
41	Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. ACS Applied Materials & Interfaces, 2018, 10, 42328-42334.	4.0	37
42	Allâ€Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cells with Selfâ€Depleted Na ₂ S Back Contact Modification Layer. Advanced Functional Materials, 2018, 28, 1703369.	7.8	36
43	Enhanced Photocatalytic Property of γ-CsPbI ₃ Perovskite Nanocrystals with WS ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 1219-1229.	3.2	33
44	Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered α-zirconium phosphate. Applied Physics Letters, 2006, 89, 194104.	1.5	32
45	In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. Journal of Materials Chemistry C, 2019, 7, 6795-6804.	2.7	31
46	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	3.1	30
47	Reduction of free-standing graphene oxide papers by a hydrothermal process at the solid/gas interface. RSC Advances, 2013, 3, 2971.	1.7	29
48	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29
49	Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 17861-17870.	4.0	29
50	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	4.0	28
51	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	3.1	27
52	Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756.	6.7	26
53	Upconversion 32Nb2O5–10La2O3–16ZrO2 glass activated with Er3+/Yb3+ and dye sensitized solar cell application. Journal of Advanced Ceramics, 2017, 6, 312-319.	8.9	26
54	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25

#	Article	IF	CITATIONS
55	A novel preparation method for NiCo2O4 electrodes stacked with hexagonal nanosheets for water electrolysis. Journal of Applied Electrochemistry, 2006, 36, 945-950.	1.5	24
56	Facile in situ synthesis of dendrite-like ZnO/ZnTe core/shell nanorod heterostructures for sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 4740-4747.	2.7	24
57	Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale, 2019, 11, 16907-16918.	2.8	24
58	Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. Journal of Materials Chemistry A, 2018, 6, 20702-20711.	5.2	22
59	Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO ₂ Electron Transport Layer. ChemistrySelect, 2017, 2, 9433-9437.	0.7	21
60	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	4.0	21
61	Improvement of Csâ€(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} Quality Via DMSOâ€Moleculeâ€Control to Increase the Efficiency and Boost the Longâ€Term Stability of 1 cm ² Sized Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800338.	3.1	21
62	Zein-Polyglycerol Conjugates with Enhanced Water Solubility and Stabilization of High Oil Loading Emulsion. Journal of Agricultural and Food Chemistry, 2020, 68, 11810-11816.	2.4	21
63	Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach. Journal of the American Ceramic Society, 2007, 90, 635-637.	1.9	19
64	Synthesis, electrochemical, photophysical, and electroluminescent properties of organic dyes containing pyrazolo[3, 4-b]quinoline chromophore. Dyes and Pigments, 2015, 121, 138-146.	2.0	19
65	Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers. Journal of Chemical Physics, 2019, 151, 174704.	1.2	18
66	Improved phase stability of γ-CsPbI ₃ perovskite nanocrystals using the interface effect using iodine modified graphene oxide. Journal of Materials Chemistry C, 2020, 8, 2569-2578.	2.7	18
67	Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Advances, 2016, 6, 21156-21164.	1.7	17
68	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	3.8	17
69	Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property. Journal of Chemical Physics, 2020, 153, 024703.	1.2	14
70	Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. ChemistrySelect, 2018, 3, 6802-6809.	0.7	13
71	Advances in Phase Stability of Cesium Lead Halide Perovskites. Solar Rrl, 2020, 4, 2000495.	3.1	13
72	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11

#	Article	IF	CITATIONS
73	Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance. RSC Advances, 2017, 7, 14837-14845.	1.7	10
74	Mechanical Property and Oxidation Behavior of Self-Reinforced Si3N4 Doped with Re2O3 (Re=Yb, Lu). Journal of the American Ceramic Society, 2006, 89, 1730-1732.	1.9	9
75	Solution-processed Kesterite Cu ₂ ZnSnS ₄ as Efficient Hole Extraction Layer for Inverted Perovskite Solar Cells. Chemistry Letters, 2018, 47, 817-820.	0.7	9
76	Preparation and Enhanced UVâ€Visible Light Photoelectrocatalytic Activity of TiO ₂ â€Fe ₂ O ₃ /Cu Ternary Nanocomposites. ChemistrySelect, 2019, 4, 2892-2897.	0.7	9
77	Reduced Graphene Oxide/CZTS _x Se _{1â€x} Composites as a Novel Holeâ€Transport Functional Layer in Perovskite Solar Cells. ChemElectroChem, 2019, 6, 1500-1507.	1.7	9
78	New trends for solar cell development and recent progress of dye sensitized solar cells. Frontiers of Materials Science in China, 2009, 3, 345-352.	0.5	8
79	Facile conversion of silicon nitride nanobelts into sandwich-like nanosaws: towards functional nanostructured materials. Applied Physics A: Materials Science and Processing, 2009, 97, 729-734.	1.1	8
80	HIGHLY CATALYTIC ACTIVE NANOSTRUCTURED Pt ELECTRODES FOR DYE-SENSITIZED SOLAR CELLS PREPARED BY LOW TEMPERATURE ELECTRODEPOSITION. Functional Materials Letters, 2011, 04, 7-11.	0.7	8
81	Enhanced efficiency and reduced rollâ€off in white organic lightâ€emitting diodes based on two ultraâ€ŧhin emitting layers. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 408-412.	0.8	8
82	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	1.7	8
83	Suppressed phase transition of a Rb/K incorporated inorganic perovskite with a water-repelling surface. Nanoscale, 2020, 12, 6571-6581.	2.8	8
84	Electron transport in dye-sensitized solar cells based on TiO2 nanowires. Science China: Physics, Mechanics and Astronomy, 2014, 57, 892-897.	2.0	6
85	Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids and Surfaces B: Biointerfaces, 2019, 181, 305-314.	2.5	6
86	Comparative analysis of polyester hydrolysis activity among three lipolytic enzymes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2522-2528.	1.6	6
87	Screening of perhydrolases to optimize glucose oxidase-perhydrolase-in situ chemical oxidation cascade reaction system and its application in melanin decolorization. Journal of Biotechnology, 2021, 328, 106-114.	1.9	6
88	Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer. Solid-State Electronics, 2014, 94, 6-10.	0.8	5
89	Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model. BMC Biotechnology, 2016, 16, 38.	1.7	5
90	Cobalt Salt as Efficient Dopant for Spiro-MeOTAD in Cesium-Containing Planar Perovskite Solar Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 2898-2902.	0.9	5

#	Article	IF	CITATIONS
91	Deepâ€blue, Iowâ€threshold amplified spontaneous emitting and high thermal stability binaphthyl derivates. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2372-2377.	0.8	4
92	All Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cell by Using Highâ€Boilingâ€Point Solvent Treated Ballâ€Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 2019, 4, 982-989.	0.7	4
93	Phase Evolution in Heat-Treated Si3N4with Additions of Yb2O3. Journal of the American Ceramic Society, 2008, 91, 611-614.	1.9	3
94	Facile solvothermal synthesis of single-crystalline anatase nanorods for efficient dye-sensitized solar cells. Pure and Applied Chemistry, 2012, 85, 417-425.	0.9	3
95	Lowâ€Temperature and Largeâ€Scale Synthesis of Carbon Nanofiber Web via Electrospinning and Their Efficient Removal of Cr(VI) Ions. ChemistrySelect, 2018, 3, 10543-10548.	0.7	3
96	Effect of LiF on the optical transmittance of magnesium aluminate spinel. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 526-528.	0.4	2
97	Fabrication of flexible α-MnO2 nanowire membranes with superior mechanical strength. Science Bulletin, 2014, 59, 1454-1458.	1.7	2
98	Solar Cells: Thermionic Emission-Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites (Adv. Energy Mater. 36/2018). Advanced Energy Materials, 2018, 8, 1870155.	10.2	2
99	Focus issue on organic and hybrid photovoltaics. Science and Technology of Advanced Materials, 2019, 20, 42-43.	2.8	2
100	An Efficient, Multiâ€element AC/TiO ₂ /WO ₃ Photocatalyst for the Degradation of Tetracycline Hydrochloride. ChemistrySelect, 2022, 7, .	0.7	2
101	Doping effect of Ir(ppy)3 on white-light electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride. Displays, 2014, 35, 74-78.	2.0	1
102	Solid Electrolytes: Organic-Inorganic Perovskite Light-Emitting Electrochemical Cells with a Large Capacitance (Adv. Funct. Mater. 46/2015). Advanced Functional Materials, 2015, 25, 7243-7243.	7.8	1
103	Ultrasonic Remove of Particle Aggregation in Carbon Based Counter Electrodes for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 4366-4370.	0.9	1
104	All‣ayer Sputteringâ€Free Cu2Zn1â€xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 2019, 4, 5979-5983.	0.7	1
105	Generation of Ultrafine Droplets in Femtoliter Scale from a Large Needle with Diameter of 200 Microns. Journal of Nanoscience and Nanotechnology, 2019, 19, 4244-4248.	0.9	1
106	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1970115.	3.1	1
107	Facile conversion of silicon nitride nanobelts into sandwich-like nanosaws II: growth mechanism and optical properties. Applied Physics A: Materials Science and Processing, 2010, 98, 321-326.	1.1	0
108	Extremely High Efficiency Orange Phosphorescent Organic Light-Emitting Devices. Advanced Materials Research, 2012, 490-495, 3221-3225.	0.3	0

#	Article	IF	CITATIONS
109	Use of Versatile Binaphthalene Derivative in Chromatic-Stability Non-Doped White Organic Light Emitting Diodes. Advanced Materials Research, 2012, 490-495, 3887-3891.	0.3	0
110	Organic Solar Cells: A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
111	Pâ€13.3: Efficient Blue and Color Tunable White OLED Based on Platinum Complex. Digest of Technical Papers SID International Symposium, 2021, 52, 637-637.	0.1	Ο
112	Fast-response Organic Light-emitting Devices for Optical Communication. Chinese Journal of Luminescence, 2013, 34, 73-77.	0.2	0
113	Perovskite Solar Cell-Thermoelectric Tandem System with a High Efficiency of Over 23%. , 0, , .		0