
Chu-Young Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11834349/publications.pdf Version: 2024-02-01

Сни-Уолис Сно

#	Article	IF	CITATIONS
1	Surfaceâ€Plasmonâ€Enhanced Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 1253-1257.	21.0	466
2	Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	271
3	Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21, 175201.	2.6	259
4	Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Applied Physics Letters, 2011, 98, .	3.3	132
5	Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN. Nanotechnology, 2010, 21, 205201.	2.6	80
6	Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111). Applied Physics Letters, 2013, 102, 211110.	3.3	72
7	Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes. Applied Physics Letters, 2010, 96, .	3.3	65
8	Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in <i>p</i> -GaN. Applied Physics Letters, 2011, 99, .	3.3	65
9	Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells. Applied Physics Letters, 2008, 92, .	3.3	60
10	Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111). Applied Physics Letters, 2013, 102, 011106.	3.3	50
11	Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices. Applied Physics Letters, 2012, 101, .	3.3	48
12	Effect of InGaN quantum dot size on the recombination process in light-emitting diodes. Applied Physics Letters, 2008, 92, 253105.	3.3	46
13	In Ga N â^• Ga N multiple quantum wells grown on microfacets for white-light generation. Applied Physics Letters, 2008, 93, .	3.3	45
14	Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells. Journal Physics D: Applied Physics, 2010, 43, 354004.	2.8	45
15	Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles. Optics Express, 2013, 21, 3138.	3.4	41
16	High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask. Optics Express, 2011, 19, A943.	3.4	37
17	Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles. Optics Express, 2016, 24, 7488.	3.4	30
18	Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO_2. Optics Express, 2010, 18, 1462.	3.4	26

Сни-Young Сно

#	Article	IF	CITATIONS
19	Near-ultraviolet light-emitting diodes with transparent conducting layer of gold-doped multi-layer graphene. Journal of Applied Physics, 2013, 113, .	2.5	24
20	Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN. Applied Physics Letters, 2010, 96, .	3.3	21
21	Growth and Separation of High Quality GaN Epilayer from Sapphire Substrate by Lateral Epitaxial Overgrowth and Wet Chemical Etching. Applied Physics Express, 2011, 4, 012104.	2.4	21
22	Enhanced light extraction efficiency in flip-chip GaN light-emitting diodes with diffuse Ag reflector on nanotextured indium-tin oxide. Applied Physics Letters, 2008, 93, .	3.3	16
23	Enhanced Optical Power of InGaN/GaN Light-Emitting Diode by AlGaN Interlayer and Electron Blocking Layer. IEEE Photonics Technology Letters, 2012, 24, 1991-1994.	2.5	12
24	White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates. Nanotechnology, 2017, 28, 225703.	2.6	10
25	Green Light-Emitting Diodes on Semipolar {1122} Microfacets Grown by Selective Area Epitaxy. Journal of the Electrochemical Society, 2010, 157, H86.	2.9	6
26	Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles. Thin Solid Films, 2015, 590, 76-79.	1.8	6
27	Enhanced Optical Output Power of Blue Light-Emitting Diode Grown on Sapphire Substrate with Patterned Distributed Bragg Reflector. ECS Journal of Solid State Science and Technology, 2018, 7, Q66-Q69.	1.8	4
28	Improved performance of InGaN/GaN Near-UV light-emitting diodes with staircase hole injector. Engineering Research Express, 2021, 3, 015004.	1.6	3
29	Enhanced Internal Quantum Efficiency and Light Extraction Efficiency of Light-emitting Diodes with Air-gap Photonic Crystal Structure Formed by Tungsten Nano-mask. Bulletin of the Korean Chemical Society, 2014, 35, 705-708.	1.9	1
30	Enhanced Blue Emission from InGaN Quantum Wells by Surface Plasmon in Multi-Walled Carbon Nanotubes. ECS Journal of Solid State Science and Technology, 2012, 1, R140-R142.	1.8	0