Rogier M Reijmers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1183334/publications.pdf

Version: 2024-02-01

414414 257450 1,384 37 24 32 citations g-index h-index papers 39 39 39 2540 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immature Neutrophils Mediate Tumor Cell Killing via IgA but Not IgG Fc Receptors. Journal of Immunology, 2005, 174, 5472-5480.	0.8	133
2	Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. Journal of Clinical Investigation, 2019, 129, 774-785.	8.2	128
3	miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Laboratory Investigation, 2009, 89, 708-716.	3.7	103
4	Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. ELife, 2014, 3, .	6.0	92
5	MiRNA profiling in B nonâ€Hodgkin lymphoma: a <i>MYC</i> â€related miRNA profile characterizes Burkitt lymphoma. British Journal of Haematology, 2010, 149, 896-899.	2.5	71
6	Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. Journal of Extracellular Vesicles, 2018, 7, 1446660.	12.2	64
7	Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney International, 2012, 81, 651-661.	5.2	54
8	Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood, 2010, 115, 601-604.	1.4	50
9	Simultaneous Deletion of Endogenous TCRÎ \pm Î 2 for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Molecular Therapy, 2020, 28, 64-74.	8.2	50
10	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	12.4	49
11	Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood, 2011, 117, 6162-6171.	1.4	48
12	Heparan sulfate proteoglycans in the control of <scp>B</scp> cell development and the pathogenesis of multiple myeloma. FEBS Journal, 2013, 280, 2180-2193.	4.7	47
13	Lymph Node Stromal Cells Generate Antigen-Specific Regulatory T Cells and Control Autoreactive T and B Cell Responses. Cell Reports, 2020, 30, 4110-4123.e4.	6.4	46
14	CD62L Is a Functional and Phenotypic Marker for Circulating Innate Lymphoid Cell Precursors. Journal of Immunology, 2019, 202, 171-182.	0.8	45
15	The small GTPase Ral mediates SDF-1–induced migration of B cells and multiple myeloma cells. Blood, 2008, 111, 3364-3372.	1.4	43
16	Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. American Journal of Physiology - Renal Physiology, 2008, 294, F253-F263.	2.7	39
17	IL-7–dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. Journal of Experimental Medicine, 2018, 215, 1069-1077.	8.5	38
18	Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nature Communications, 2019, 10, 4451.	12.8	38

#	Article	IF	CITATIONS
19	N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica, 2011, 96, 1653-1661.	3.5	36
20	Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE, 2015, 10, e0140279.	2.5	34
21	Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation. Cell Reports, 2017, 21, 823-833.	6.4	32
22	Loss of ILâ€22 inhibits autoantibody formation in collagenâ€induced arthritis in mice. European Journal of Immunology, 2016, 46, 1404-1414.	2.9	30
23	Overexpression of heparanase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis. Scientific Reports, 2017, 7, 46229.	3.3	28
24	A Reproducible Method for Isolation and In Vitro Culture of Functional Human Lymphoid Stromal Cells from Tonsils. PLoS ONE, 2016, 11, e0167555.	2.5	26
25	Impaired Lymphoid Organ Development in Mice Lacking the Heparan Sulfate Modifying Enzyme Glucuronyl C5-Epimerase. Journal of Immunology, 2010, 184, 3656-3664.	0.8	25
26	Activation and effector functions of human RORC+ innate lymphoid cells. Current Opinion in Immunology, 2011, 23, 361-367.	5.5	9
27	Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude. Frontiers in Immunology, 2018, 9, 206.	4.8	7
28	Development of follicular dendritic cells in lymph nodes depends on retinoic acid-mediated signaling. Development (Cambridge), 2021, 148, .	2.5	4
29	Instant conditional transgenesis in the mouse hematopoietic compartment. Journal of Immunological Methods, 2008, 339, 259-263.	1.4	3
30	An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML. Cancers, 2021, 13, 5390.	3.7	3
31	Editorial: Proteoglycans and Glycosaminoglycan Modification in Immune Regulation and Inflammation. Frontiers in Immunology, 2020, 11, 595867.	4.8	2
32	Targeting EXT-1 Reveals a Crucial Role of Heparan Sulfate in the Growth of Multiple Myeloma Blood, 2009, 114, 1830-1830.	1.4	1
33	Specific Micro-RNA Expression Profile in Hodgkin Lymphoma Blood, 2007, 110, 381-381.	1.4	0
34	Differences in the C13orf25 miRNA Cluster in Non-Hodgkin Lymphoma and Normal B-Cell Subtypes Blood, 2007, 110, 3586-3586.	1.4	0
35	miRNA Expression Profile of B-SLL Consistent with Normal Memory B Cells:BIC/miR–155 Specific Location in Proliferation Center Blood, 2007, 110, 2081-2081.	1.4	0
36	Mirna Profiling Reveals Specific Patterns for Normal B Cell Subsets and B Cell Lymphomas with a Unique Burkitt Lymphoma Profile. Blood, 2008, 112, 3763-3763.	1.4	0

3

#	Article	IF	CITATIONS
37	miRNA Profiling of B Cell Subsets: Specific miRNA Profile for Germinal Center B Cells with a Marked Variation Between Centroblast and Centrocytes Blood, 2008, 112, 1459-1459.	1.4	O