Huarong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11831943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 2012, 46, 2881-2890.	5.3	316
2	Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 2012, 46, 1490-1500.	5.3	255
3	Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Research, 2018, 132, 190-199.	5.3	195
4	Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technology, 2016, 211, 566-573.	4.8	184
5	Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review. Journal of Membrane Science, 2017, 540, 362-380.	4.1	138
6	Dynamic membrane for micro-particle removal in wastewater treatment: Performance and influencing factors. Science of the Total Environment, 2018, 627, 332-340.	3.9	133
7	Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 2020, 145, 106106.	4.8	129
8	Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: Comparison of mesoporous adsorbent resin and powdered activated carbon. Journal of Membrane Science, 2014, 471, 94-102.	4.1	128
9	Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy. Water Research, 2017, 125, 72-80.	5.3	113
10	Membrane Fouling and Rejection of Organics during Algae-Laden Water Treatment Using Ultrafiltration: A Comparison between in Situ Pretreatment with Fe(II)/Persulfate and Ozone. Environmental Science & Technology, 2018, 52, 765-774.	4.6	111
11	Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis. Chemosphere, 2015, 121, 101-109.	4.2	107
12	Ultrafiltration (UF) membrane fouling caused by cyanobateria: Fouling effects of cells and extracellular organics matter (EOM). Desalination, 2012, 293, 30-37.	4.0	103
13	Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition. Journal of Membrane Science, 2015, 493, 723-733.	4.1	102
14	Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 2014, 464, 33-42.	4.1	98
15	Quorum sensing and quenching in membrane bioreactors: Opportunities and challenges for biofouling control. Bioresource Technology, 2018, 270, 656-668.	4.8	95
16	Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter. Journal of Membrane Science, 2017, 528, 178-186.	4.1	91
17	Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (CDM) filtration system. Water Research, 2017, 108, 240-249.	5.3	82
18	Combined influence by humic acid (HA) and powdered activated carbon (PAC) particles on ultrafiltration membrane fouling Journal of Membrane Science, 2016, 500, 99-105	4.1	79

Huarong Yu

#	Article	IF	CITATIONS
19	Microcystis aeruginosa -laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection. Water Research, 2017, 112, 83-92.	5.3	78
20	Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors. Bioresource Technology, 2016, 211, 339-347.	4.8	74
21	Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Scientific Reports, 2015, 5, 10207.	1.6	72
22	Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Advances, 2016, 6, 11128-11139.	1.7	68
23	Reverse osmosis brine treatment using direct contact membrane distillation: Effects of feed temperature and velocity. Desalination, 2017, 423, 149-156.	4.0	67
24	Role of backwash water composition in alleviating ultrafiltration membrane fouling by sodium alginate and the effectiveness of salt backwashing. Journal of Membrane Science, 2016, 499, 429-441.	4.1	65
25	Application of membrane distillation to anaerobic digestion effluent treatment: Identifying culprits of membrane fouling and scaling. Science of the Total Environment, 2019, 688, 880-889.	3.9	63
26	Biofouling control by biostimulation of quorumâ€quenching bacteria in a membrane bioreactor for wastewater treatment. Biotechnology and Bioengineering, 2016, 113, 2624-2632.	1.7	59
27	Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling. Desalination, 2019, 449, 6-15.	4.0	54
28	Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 2014, 337, 67-75.	4.0	52
29	Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis. Water Research, 2019, 148, 546-555.	5.3	52
30	Core-shell structured quorum quenching beads for more sustainable anti-biofouling in membrane bioreactors. Water Research, 2019, 150, 321-329.	5.3	48
31	Dynamic Membrane Filtration: Formation, Filtration, Cleaning, and Applications. Chemical Engineering and Technology, 2018, 41, 7-18.	0.9	47
32	Immobilized microalgae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system: Algal harvest and membrane fouling control. Bioresource Technology, 2018, 268, 139-148.	4.8	41
33	Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation. Water Research, 2020, 187, 116452.	5.3	39
34	Effect of residual commercial antiscalants on gypsum scaling and membrane wetting during direct contact membrane distillation. Desalination, 2020, 486, 114493.	4.0	39
35	A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. Journal of Industrial and Engineering Chemistry, 2021, 98, 42-59.	2.9	38
36	Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere, 2019, 228, 35-43.	4.2	33

HUARONG YU

#	Article	IF	CITATIONS
37	Effect of solid retention time on membrane fouling in membrane bioreactor: from the perspective of quorum sensing and quorum quenching. Applied Microbiology and Biotechnology, 2016, 100, 7887-7897.	1.7	32
38	Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors. Chemical Engineering Journal, 2019, 378, 122235.	6.6	31
39	Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge. Arabian Journal of Chemistry, 2019, 12, 4142-4149.	2.3	31
40	Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals. Environmental Science: Water Research and Technology, 2019, 5, 672-683.	1.2	30
41	Effect of quorum quenching on biofouling and ammonia removal in membrane bioreactor under stressful conditions. Chemosphere, 2018, 199, 114-121.	4.2	28
42	Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation–emission matrix coupled with parallel factor analysis. International Biodeterioration and Biodegradation, 2015, 102, 56-63.	1.9	27
43	Membrane fouling control by UV/persulfate in tertiary wastewater treatment with ultrafiltration: A comparison with UV/hydroperoxide and role of free radicals. Separation and Purification Technology, 2021, 257, 117877.	3.9	27
44	Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane. Chemosphere, 2017, 179, 254-264.	4.2	26
45	Reverse osmosis brine treatment using direct contact membrane distillation (DCMD): effect of membrane characteristics on desalination performance and the wetting phenomenon. Environmental Science: Water Research and Technology, 2018, 4, 428-437.	1.2	23
46	A strategy to speed up formation and strengthen activity of biofilms at low temperature. RSC Advances, 2017, 7, 22788-22796.	1.7	21
47	Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition. Environmental Science and Pollution Research, 2017, 24, 23226-23235.	2.7	19
48	Characterization of membrane foulants in a pilot-scale powdered activated carbon–membrane bioreactor for drinking water treatment. Process Biochemistry, 2014, 49, 1741-1746.	1.8	18
49	Fouling Mechanisms Analysis via Combined Fouling Models for Surface Water Ultrafiltration Process. Membranes, 2020, 10, 149.	1.4	16
50	A pilot study of hybrid biological activated carbon (BAC) filtration-ultrafiltration process for water supply in rural areas: role of BAC pretreatment in alleviating membrane fouling. Environmental Science: Water Research and Technology, 2018, 4, 315-324.	1.2	15
51	Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. Algal Research, 2022, 63, 102652.	2.4	14
52	Powdered activated carbon – membrane bioreactor operated underÂintermittent aeration and short sludge retention times forÂmicro-polluted surface water treatment. International Biodeterioration and Biodegradation, 2015, 102, 81-88.	1.9	13
53	In situ versus pre-quorum quenching of microbial signaling for enhanced biofouling control in membrane bioreactors. Journal of Membrane Science, 2019, 592, 117387.	4.1	10
54	Sewage sludge ash-based thermo-responsive hydrogel as a novel draw agent towards high performance of water flux and recovery for forward-osmosis. Desalination, 2021, 512, 115147.	4.0	10

Huarong Yu

#	Article	IF	CITATIONS
55	A pilot-scale study of a powdered activated carbon-membrane bioreactor for the treatment of water with a high concentration of ammonia. Environmental Science: Water Research and Technology, 2016, 2, 125-133.	1.2	9
56	Impacts of Natural Organic Matter Adhesion on Irreversible Membrane Fouling during Surface Water Treatment Using Ultrafiltration. Membranes, 2020, 10, 238.	1.4	9
57	Effect of sewage sludge ash contents on the performance of thermo-sensitive hydrogel as draw agent for forward osmosis application. Journal of Cleaner Production, 2021, 313, 127941.	4.6	9
58	A Pilot Study of the Sludge Recycling Enhanced Coagulation–Ultrafiltration Process for Drinking Water: The Effects of Sludge Recycling Ratio and Coagulation Stirring Strategy. Water (Switzerland), 2017, 9, 183.	1.2	8
59	Synthesis of dual <scp>pH</scp> ―and temperatureâ€sensitive poly(Nâ€isopropylacrylamideâ€coâ€acrylic) Tj E deswelling. Polymers for Advanced Technologies, 2022, 33, 235-245.	TQq1 1 0. 1.6	784314 rg87 7
60	Algae-laden water treatment with ultrafiltration: effects of moderate oxidation by Fe(<scp>ii</scp>)/permanganate on hydraulically irreversible fouling and deposition of iron and manganese oxides. Environmental Science: Water Research and Technology, 2021, 7, 122-133.	1.2	6
61	Correlating ultrafiltration membrane fouling with membrane properties, water quality, and permeate flux. Desalination and Water Treatment, 2015, 56, 1746-1757.	1.0	5
62	Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 2016, 57, 21794-21805.	1.0	5
63	Photolytic quorum quenching effects on the microbial communities and functional gene expressions in membrane bioreactors. Science of the Total Environment, 2022, 819, 152017.	3.9	3
64	A new backwash strategy for reducing the cost of an immersed ultrafiltration system by restricting cake layer breakage. Water Science and Technology: Water Supply, 2020, 20, 1453-1462.	1.0	0